コード例 #1
0
ファイル: geom.py プロジェクト: zeta1999/PhiFlow
def _weighted_sliced_laplace_nd(tensor, weights):
    if tensor.shape[-1] != 1:
        raise ValueError('Laplace operator requires a scalar channel as input')
    dims = range(math.spatial_rank(tensor))
    components = []
    for dimension in dims:
        lower_weights, center_weights, upper_weights = _dim_shifted(
            weights, dimension, (-1, 0, 1), diminish_others=(1, 1))
        lower_values, center_values, upper_values = _dim_shifted(
            tensor, dimension, (-1, 0, 1), diminish_others=(1, 1))
        diff = math.mul(
            upper_values, upper_weights * center_weights) + math.mul(
                lower_values, lower_weights * center_weights) + math.mul(
                    center_values, -lower_weights - upper_weights)
        components.append(diff)
    return math.sum(components, 0)
コード例 #2
0
def sparse_values(dimensions, extended_active_mask, extended_fluid_mask, sorting=None, periodic=False):
    """
    Builds a sparse matrix such that when applied to a flattened pressure channel, it calculates the laplace
    of that channel, taking into account obstacles and empty cells.

    :param dimensions: valid simulation dimensions. Pressure channel should be of shape (batch size, dimensions..., 1)
    :param extended_active_mask: Binary tensor with 2 more entries in every dimension than 'dimensions'.
    :param extended_fluid_mask: Binary tensor with 2 more entries in every dimension than 'dimensions'.
    :return: SciPy sparse matrix that acts as a laplace on a flattened pressure channel given obstacles and empty cells
    """
    N = int(np.prod(dimensions))
    d = len(dimensions)
    dims = range(d)

    values_list = []
    diagonal_entries = 0  # diagonal matrix entries

    gridpoints_linear = np.arange(N)
    gridpoints = np.stack(np.unravel_index(gridpoints_linear, dimensions)) # d * (N^2) array mapping from linear to spatial frames

    for dim in dims:
        lower_active, self_active, upper_active = _dim_shifted(extended_active_mask, dim, (-1, 0, 1), diminish_others=(1, 1))
        lower_accessible, upper_accessible = _dim_shifted(extended_fluid_mask, dim, (-1, 1), diminish_others=(1, 1))

        stencil_upper = upper_active * self_active
        stencil_lower = lower_active * self_active
        stencil_center = - lower_accessible - upper_accessible

        diagonal_entries += math.flatten(stencil_center)

        dim_direction = math.expand_dims([1 if i == dim else 0 for i in range(d)], axis=-1)
        # --- Stencil upper cells ---
        upper_points, upper_idx = wrap_or_discard(gridpoints + dim_direction, dim, dimensions, periodic=collapsed_gather_nd(periodic, [dim, 1]))
        values_list.append(math.gather(math.flatten(stencil_upper), upper_idx))
        # --- Stencil lower cells ---
        lower_points, lower_idx = wrap_or_discard(gridpoints - dim_direction, dim, dimensions, periodic=collapsed_gather_nd(periodic, [dim, 0]))
        values_list.append(math.gather(math.flatten(stencil_lower), lower_idx))

    values_list.insert(0, math.minimum(diagonal_entries, -1.))
    values = math.concat(values_list, axis=0)
    if sorting is not None:
        values = math.gather(values, sorting)
    return values
コード例 #3
0
def sparse_pressure_matrix(dimensions, extended_active_mask, extended_fluid_mask, periodic=False):
    """
Builds a sparse matrix such that when applied to a flattened pressure channel, it calculates the laplace
of that channel, taking into account obstacles and empty cells.

    :param dimensions: valid simulation dimensions. Pressure channel should be of shape (batch size, dimensions..., 1)
    :param extended_active_mask: Binary tensor with 2 more entries in every dimension than 'dimensions'.
    :param extended_fluid_mask: Binary tensor with 2 more entries in every dimension than 'dimensions'.
    :return: SciPy sparse matrix that acts as a laplace on a flattened pressure channel given obstacles and empty cells
    """
    N = int(np.prod(dimensions))
    d = len(dimensions)
    A = scipy.sparse.lil_matrix((N, N), dtype=np.float32)
    dims = range(d)

    diagonal_entries = np.zeros(N, extended_active_mask.dtype)  # diagonal matrix entries

    gridpoints_linear = np.arange(N)
    gridpoints = np.stack(np.unravel_index(gridpoints_linear, dimensions))  # d * (N^2) array mapping from linear to spatial frames

    for dim in dims:
        lower_active, self_active, upper_active = _dim_shifted(extended_active_mask, dim, (-1, 0, 1), diminish_others=(1,1))
        lower_accessible, upper_accessible = _dim_shifted(extended_fluid_mask, dim, (-1, 1), diminish_others=(1, 1))

        stencil_upper = upper_active * self_active
        stencil_lower = lower_active * self_active
        stencil_center = - lower_accessible - upper_accessible

        diagonal_entries += math.flatten(stencil_center)

        dim_direction = math.expand_dims([1 if i == dim else 0 for i in range(d)], axis=-1)
        # --- Stencil upper cells ---
        upper_points, upper_idx = wrap_or_discard(gridpoints + dim_direction, dim, dimensions, periodic=collapsed_gather_nd(periodic, [dim, 1]))
        A[gridpoints_linear[upper_idx], upper_points] = stencil_upper.flatten()[upper_idx]
        # --- Stencil lower cells ---
        lower_points, lower_idx = wrap_or_discard(gridpoints - dim_direction, dim, dimensions, periodic=collapsed_gather_nd(periodic, [dim, 0]))
        A[gridpoints_linear[lower_idx], lower_points] = stencil_lower.flatten()[lower_idx]

    A[gridpoints_linear, gridpoints_linear] = math.minimum(diagonal_entries, -1)  # avoid 0, could lead to NaN

    return scipy.sparse.csc_matrix(A)