def empty_net(): import random from phievo.Networks import mutation seed = int(random.random() * 100000) g = random.Random(seed) net = mutation.Mutable_Network(g) return net
def init_network(): seed = int(random.random() * 100000) g = random.Random(seed) L = mutation.Mutable_Network(g) L.remove_output_when_duplicate = False parameters = [[ 'Degradable', mutation.sample_dictionary_ranges('Species.degradation', random) ]] parameters.append(['TF', 1]) parameters.append(['Input', 0]) TF = L.new_Species(parameters) for k in range(5): [tm, prom, o1] = L.random_gene('TF') o1.add_type(['Output', k]) L.activator_required = 1 L.fixed_activity_for_TF = 0 L.write_id() L.random_Interaction('TFHill') L.random_Interaction('TFHill') L.random_Interaction('TFHill') L.write_id() for i in L.dict_types['TFHill']: i.activity = 1 i.threshold = min(0.1, i.threshold) return L
def init_network(): seed = int(random.random() * 100000) g = random.Random(seed) L = mutation.Mutable_Network(g) L.fixed_activity_for_TF = 0 parameters = [[ 'Degradable', mutation.sample_dictionary_ranges('Species.degradation', random) ]] parameters.append(['Input', 0]) parameters.append(['Complexable']) TF1 = L.new_Species(parameters) parameters = [[ 'Degradable', mutation.sample_dictionary_ranges('Species.degradation', random) ]] parameters.append(['Input', 1]) parameters.append(['Complexable']) TF2 = L.new_Species(parameters) [tm, prom, o1] = L.random_gene('TF') o1.mutable = False o1.add_type(['Output', 0]) o1.clean_type('Complexable') L.write_id() return L
def init_network(): seed = int(random.random() * 100000) g = random.Random(seed) L = mutation.Mutable_Network(g) parameters = [[ 'Degradable', mutation.sample_dictionary_ranges('Species.degradation', random) ]] parameters.append(['TF', 1]) parameters.append(['Input', 0]) TF = L.new_Species(parameters) for k in range(2): [tm, prom, o1] = L.random_gene('TF') o1.add_type(['Output', k]) L.activator_required = 1 L.fixed_activity_for_TF = 0 L.write_id() return L
def init_network(): seed = int(random.random() * 100000) g = random.Random(seed) net = mutation.Mutable_Network(g) ## Input parameters = [] parameters.append(['TF', 1]) parameters.append(['Input', 0]) TF = net.new_Species(parameters) ## Add one output N_output = 1 for k in range(2): [tm, prom, o1] = net.random_gene('TF') o1.add_type(['Output', k]) # for k in range(N_output): # [tm, prom, o1] = net.random_gene(['TF',1]) # o1.add_type(['Output',k]) net.write_id() return net
def setUp(self): seed = 0 g = random.Random(seed) self.net = mutation.Mutable_Network(g)
def init_network(): seed=int(random.random()*510) g=random.Random(seed) L=mutation.Mutable_Network(g) conc = 1000.0 T = 1.0 # the ligand (the pMHC on the antigen presenting cell) parameters=[['Ligand']] parameters.append(['Input',0]) Lig=L.new_Species(parameters) # the receptor (on the T cell) parameters=[['Receptor']] R = L.new_Species(parameters) # a kinase. parameters=[['Kinase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) K1 = L.new_Species(parameters) # a kinase. parameters=[['Kinase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) K2 = L.new_Species(parameters) # a kinase. parameters=[['Kinase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) K3 = L.new_Species(parameters) # a phosphatase. parameters=[['Phosphatase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) P1 = L.new_Species(parameters) # a phosphatase. parameters=[['Phosphatase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) P2 = L.new_Species(parameters) # a phosphatase. parameters=[['Phosphatase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) P3 = L.new_Species(parameters) # the complex generated: it is a kinase that is phosphorylable and with the label pMHC to indicate it is in the cascade. parameters=[['Kinase']] parameters.append(['Phosphorylable']) parameters.append(['Phospho',0]) parameters.append(['pMHC']) # the first binding of the receptor and ligand generating the complex. kappa = 1E-4 [Binding, C] = L.new_KPR_Binding(Lig,R,kappa,parameters) unbinbing = L.new_KPR_Unbinding(Lig,R,C) # the output tag placed on the unphosphorylated complex arising from binding of receptor and ligand. C.add_type(['Output',0]) L.write_id() # checks consecutive numbering for IO species. L.verify_IO_numbers() return L
## Import the libraries from phievo.Networks import mutation,deriv2 import random ### Create an empty network g = random.Random(20160225) # This define a new random number generator L = mutation.Mutable_Network(g) # Create an empty network ### Create a new species _S0_ ## S0 is a reference to access quickly to the newly created species latter in the code. Note that one can add attributes to a species by adding elements to a parameter array that is passed to the new_species method. ## ATTENTION: This way of creating a species is not recommanded as it does not handle the interaction between the network's different species (see next section). It is here as to get a feeling on how the intern code works.</font> parameters=[['Degradable',0.5]] ## The species is degradable with a rate 0.5 parameters.append(['Input',0]) ## The species cannot serve as an input for the evolution algorithm parameters.append(['Complexable']) ## The species can be involved in a complex parameters.append(['Kinase']) ## The specise can phosphorilate another species. parameters.append(['TF',1]) ## 1 for activator 0 for repressor S0 = L.new_Species(parameters) ### Adding a gene ## A species itself is of no use for the evolution algorithm. The architecture of a networks associates a TModule and a CorePromoter to a a species to build an cluster representing a gene for the program. The TModule is there so that other transcription factors can bind to it and regulate S0. L = mutation.Mutable_Network(g) ## Clear the network ## Gene 0 parameters=[['Degradable',0.5]] parameters.append(['TF',1]) parameters.append(['Complexable']) TM0,prom0,S0 = L.new_gene(0.5,5,parameters) ## Adding a new gene creates a TModule, a CorePromoter and a species