def BZ_sample(self): """Returns a full sampling of the BZ by calculating frequencies at every unique k-point as sampled on the :attr:`dosmesh` grid. Returns: tuple: `(q-points, weights, eigenvalues)` where the `q-points` are the unique points after symmetry reduction; `weights` are the corresponding weights for each point; `eigenvalues` is a :class:`numpy.ndarray` of frequencies (in THz) for each point. """ #This is a little convoluted because of how the phonopy API works. We #want to get a full sampling of the BZ, but with symmetry, and then #compare the eigenvalues at every point. if self._bzsample is None: with chdir(self.phonodir): atoms = matdb_to_phonopy(self.atoms) phonpy = Phonopy(atoms, np.array(self.supercell).reshape(3, 3)) phonpy.set_force_constants(roll_fc(self.H)) phonpy._set_dynamical_matrix() #Phonopy requires full settings to compute the unique grid and #eigenvalues. We spoof the command-line parser. parser = get_parser() (options, args) = parser.parse_args() option_list = parser.option_list options.mesh_numbers = ' '.join(map(str, self.dosmesh)) phonopy_conf = PhonopyConfParser(options=options, option_list=option_list) settings = phonopy_conf.get_settings() #Next, set the mesh on the phonopy object and ask it to reduce and #calculate frequencies. mesh = settings.get_mesh() phonpy.set_mesh(*mesh) self._bzsample = phonpy.get_mesh()[0:3] return self._bzsample
class HessianSupercell(object): """Represents a supercell configuration generator that has a set of eigenvalues and eigenvectors compatible with Hessian fitting. Args: primitive (ase.Atoms): primitive configuration to create the supercell from. supercell (np.array): array of `int` supercell matrix. folder (str): path to the `phonopy` folder where `FORCE_SETS` and displacements are kept; or where `vasprun.xml` is located when the full Hessian is calculated using VASP. Attributes: phonopy (phonopy.Phonopy): phonopy class for generating dynamical matrix, eigenvalues and eigenvectors. """ def __init__(self, primitive, supercell, folder, vasp=False): self.atoms = PhonopyAtoms(symbols=primitive.get_chemical_symbols(), positions=primitive.positions, masses=primitive.get_masses(), cell=primitive.cell, pbc=primitive.pbc) self.supercell = supercell self.folder = folder if not vasp: self.phonopy = Phonopy(self.atoms, supercell) self._get_dynmatrix() self.primitive = self.phonopy._dynamical_matrix.get_primitive() else: from matdb.io import vasp_to_xyz self.phonopy = Phonopy(self.atoms, supercell) if path.isfile("FORCE_CONSTANTS"): fc = file_IO.parse_FORCE_CONSTANTS(filename="FORCE_CONSTANTS") self.phonopy.set_force_constants(fc) self.phonopy._set_dynamical_matrix() self.primitive = primitive vasp_to_xyz(folder) self.parent = quippy.Atoms(path.join(folder, "output.xyz")) def diagonalize(self, q): """Diagonalizes the dynamical matrix at `q`. Args: q (numpy.array): q-point to diagonalize at. Returns: tuple: `(eigvals, eigvecs)`, where the eigenvalues are in units of `THz` and both eigenvalues and eigenvectors are in the *primitive* cell. """ return self.phonopy.get_frequencies_with_eigenvectors(q) def _get_phase_factor(self, modulation, argument): """Returns a phase factor corresponding to the given modulation. Args: modulation (numpy.ndarray): list of displacements, one for each atom. argument (float): phase angle (in degrees) to manipulate the displacement by. """ u = np.ravel(modulation) index_max_elem = np.argmax(abs(u)) max_elem = u[index_max_elem] phase_for_zero = max_elem / abs(max_elem) phase_factor = np.exp(1j * np.pi * argument / 180) / phase_for_zero return phase_factor def _map_eigvec_supercell(self, supercell, eigvec): """Maps the specified eigenvector to the target supercell. Args: supercell (phonopy.structure.cells.Supercell): the target supercell that the atoms will be displaced in. eigvec (numpy.ndarray): target eigenvector from the *primitive* cell. """ s2u_map = supercell.get_supercell_to_unitcell_map() u2u_map = supercell.get_unitcell_to_unitcell_map() s2uu_map = [u2u_map[x] for x in s2u_map] result = [] for i in range(supercell.get_number_of_atoms()): eig_index = s2uu_map[i] * 3 ej = eigvec[eig_index:eig_index + 3] result.append(ej) return np.array(result) def _get_displacements(self, supercell, eigvec, q, amplitude, argument): """Returns the vector of displacements for a single eigenvector. .. warning:: The supercell *must* be comensurate with the selected q-vector. Args: supercell (phonopy.structure.cells.Supercell): the target supercell that the atoms will be displaced in. eigvec (numpy.ndarray): target eigenvector from the *primitive* cell. """ m = supercell.get_masses() spos = supercell.get_scaled_positions() dim = supercell.get_supercell_matrix() coefs = np.exp( 2j * np.pi * np.dot(np.dot(spos, dim.T), q)) / np.sqrt(m) meigvec = self._map_eigvec_supercell(supercell, eigvec) u = (meigvec.T * coefs).T u = np.array(u) / np.sqrt(len(m)) phase_factor = self._get_phase_factor(u, argument) u *= phase_factor * amplitude return u def iterate(self, method="hessian", supercell=None, q=None, nrattle=0): """Returns a list of possible configurations, one for each eigenmode in the system, that has `supercell` is compatible with the specified `q` vector. Args: method (str): desired method for computing the eigenvalues and eigenvectors. Possible choices are :meth:`hessian` or :meth:`dynmat`. supercell (numpy.ndarray): supercell matrix to use in generating the configs. q (numpy.ndarray): q-vector that the resulting supercell should be compatible with. nrattle (int): number of additional, empty configs to include via :meth:`quippy.Atoms.rattle`. """ if method == "hessian": dmd = self.hessian() elif method == "vasp_hessian": dmd = self.vasp_hessian() else: dmd = self.dynmat(supercell, q) hname = "hessian1" seed = quippy.Atoms() seed.copy_from(dmd["template"]) result = quippy.AtomsList() result.append(dmd["template"]) #Delete the force, energy and virial information from the copy, so that #we don't duplicate it all over. del seed.params["dft_energy"] del seed.params["dft_virial"] del seed.properties["dft_force"] for l, v in zip(dmd["eigvals"], dmd["eigvecs"]): atc = seed.copy() #Add this eigenvector to its own configuration. atc.add_property(hname, 0.0, n_cols=3) H = np.reshape(v.real, (atc.n, 3)).T setattr(atc, hname, H) #Same thing for the eigenvalue. Then save it to the group folder #structure. atc.params.set_value(hname, l) atc.params.set_value("n_hessian", 1) #atc.add_property("force", 0.0, n_cols=3) result.append(atc) for i in range(nrattle): atRand = seed.copy() quippy.randomise(atRand.pos, 0.2) result.append(atRand) # atz = seed.copy() # atz.add_property("dft_force", 0.0, n_cols=3) #atz.params.set_value("dft_energy", return result def vasp_hessian(self): """Extracts the hessian from `vasprun.xml`. """ import xml.etree.ElementTree as ET tree = ET.parse('vasprun.xml') root = tree.getroot() calc = root.getchildren()[-2] dynm = calc.find("dynmat") hessian = dynm.getchildren()[0] H = [] for v in hessian.getchildren(): H.append(map(float, v.text.split())) H = -np.array(H) eigvals, eigvecs = np.linalg.eigh(H) Na = self.primitive.n * int(np.linalg.det(self.supercell)) result = { "template": self.parent, "eigvals": [], "eigvecs": [], "hessian": H } for i, l in enumerate(eigvals): if np.abs(l) > 1e-3: result["eigvals"].append(l) result["eigvecs"].append(eigvecs[:, i].reshape(Na, 3)) return result def hessian(self): """Returns the non-zero eigenvalues and their corresponding eigenvectors. """ supercell = self.phonopy.get_supercell() Na = supercell.get_number_of_atoms() Nf = Na * 3 H = self.phonopy._dynamical_matrix._force_constants.reshape((Nf, Nf)) eigvals, eigvecs = np.linalg.eigh(H) result = { "template": phonopy_to_ase(supercell), "eigvals": [], "eigvecs": [] } for i, l in enumerate(eigvals): if np.abs(l) > 0.1: result["eigvals"].append(l) result["eigvecs"].append(eigvecs[:, i].reshape(Na, 3)) return result def dynmat(self, supercell, q=None, cutoff=0.1): """Returns the non-zero eigenvalues and their corresponding eigenvectors for the specified supercell. Args: supercell (numpy.ndarray): supercell matrix to use in generating the configs. q (numpy.ndarray): q-vector that the resulting supercell should be compatible with. cutoff (float): minimum value an eigenvalue should have before it is included in the set. """ #We need to determine the supercell matrix that is compatible with the #given `q` and has `N` atoms. scell = get_supercell(self.primitive, supercell) eigvals, eigvecs = self.diagonalize(q) result = { "template": phonopy_to_ase(scell), "eigvals": [], "eigvecs": [] } for i, l in enumerate(eigvals): if np.abs(l) > 0.1: meigvec = self._map_eigvec_supercell(scell, eigvecs[:, i]) result["eigvals"].append(l) result["eigvecs"].append(meigvec) return result def _get_dynmatrix(self): """Extracts the force constants from `FORCE_SETS` and constructs the dynamical matrix for the calculation. """ with chdir(self.folder): force_sets = file_IO.parse_FORCE_SETS() self.phonopy.set_displacement_dataset(force_sets) self.phonopy.produce_force_constants( calculate_full_force_constants=True, computation_algorithm="svd") self.phonopy._set_dynamical_matrix()