コード例 #1
1
ファイル: gibbs.py プロジェクト: hackingmaterials/MatMethods
def get_gibbs(structure, db_file, eos="vinet", t_step=10, t_min=0, t_max=1000, mesh=(20, 20, 20),
              plot=False):
    # other eos options: birch_murnaghan, murnaghan
    # The physical units of V and T are \AA^3 and K, respectively.
    # The unit of eV for Helmholtz and Gibbs energies,
    # J/K/mol for C_V and entropy, GPa for for bulk modulus and pressure are used.
    try:
        from phonopy import PhonopyQHA
    except ImportError:
        print("Install phonopy. Exiting.")
        sys.exit()

    phonon = get_phonopy(structure)
    energies, volumes, force_constants = get_data(db_file, query={
        "task_label": {"$regex": "gibbs*"}, "formula_pretty": structure.composition.reduced_formula})

    temperatures = []
    free_energy = []
    entropy = []
    cv = []

    for f in force_constants:
        phonon.set_force_constants(-np.array(f))
        phonon.set_mesh(list(mesh))
        phonon.set_thermal_properties(t_step=t_step, t_min=t_min, t_max=t_max)
        t, g, e, c = phonon.get_thermal_properties()
        temperatures.append(t)
        free_energy.append(g)
        entropy.append(e)
        cv.append(c)

    phonopy_qha = PhonopyQHA(volumes, energies, eos=eos, temperatures=temperatures[0],
                             free_energy=np.array(free_energy).T, cv=np.array(cv).T,
                             entropy=np.array(entropy).T, t_max=np.max(temperatures[0]))

    # gibbs free energy
    max_t_index = phonopy_qha._qha._max_t_index
    G = phonopy_qha.get_gibbs_temperature()[:max_t_index]
    T = phonopy_qha._qha._temperatures[:max_t_index]
    if plot:
        import warnings
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            import matplotlib.pyplot as plt
            plt.plot(T, G)
            plt.savefig("Gibbs.pdf")
            plt.show()
            #phonopy_qha.plot_qha(thin_number=10, volume_temp_exp=None).show()
    else:
        return T, G
コード例 #2
0
def get_qha(eos, temperatures, fe_phonon, cv, entropy, t_max=1000):

    from phonopy import PhonopyQHA
    import numpy as np

    phonopy_qha = PhonopyQHA(eos.get_array('volumes'),
                             eos.get_array('energies'),
                             eos="vinet",
                             temperatures=np.array(temperatures),
                             free_energy=np.array(fe_phonon).T,
                             cv=np.array(cv),
                             entropy=np.array(entropy),
                             t_max=t_max,
                             verbose=False)

    # testing
    if __testing__:
        import matplotlib.pyplot as plt
        plt = phonopy_qha.plot_qha()
        plt.show()

    qha_results = {'qha_temperatures': phonopy_qha._qha._temperatures[:phonopy_qha._qha._max_t_index],
                   'helmholtz_volume': phonopy_qha.get_helmholtz_volume(),
                   'thermal_expansion': phonopy_qha.get_thermal_expansion(),
                   'volume_temperature':  phonopy_qha.get_volume_temperature(),
                   'heat_capacity_P_numerical': phonopy_qha.get_heat_capacity_P_numerical(),
                   'volume_expansion': phonopy_qha.get_volume_expansion(),
                   'gibbs_temperature': phonopy_qha.get_gibbs_temperature()}

    return qha_results
コード例 #3
0
    def volume_shift(self, volume_range=np.arange(-2.0, 2.0, 0.1)):
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 1)

        volumes = self.phonopy_qha._qha._volumes
        energies = self.phonopy_qha._qha._electronic_energies

        free_energy = np.load('free_energy.npy')
        temperatures = np.load('temperatures.npy')
        cv = np.load('cv.npy')
        entropy = np.load('entropy.npy')

        for i in volume_range:
            volumesi = np.array(volumes) + i
            print volumesi

            phonopy_qha = PhonopyQHA(
                volumesi,
                energies,
                eos=
                "vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                temperatures=temperatures,
                free_energy=free_energy,
                cv=cv,
                entropy=entropy,
                t_max=self.fc_fit.get_temperature_range()[-1],
                verbose=False)

            cp = phonopy_qha.get_heat_capacity_P_numerical()
            import matplotlib.pyplot as plt
            import matplotlib.colors as colors

            cNorm = colors.Normalize(vmin=volume_range[0],
                                     vmax=volume_range[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm,
                                              cmap=plt.cm.get_cmap('plasma'))
            ax.plot(phonopy_qha._qha._temperatures[:-3],
                    cp,
                    label='{}'.format(i),
                    color=scalarMap.to_rgba(i))

        import matplotlib as mpl

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])

        mpl.colorbar.ColorbarBase(ax2,
                                  cmap=plt.cm.get_cmap('plasma'),
                                  norm=cNorm,
                                  spacing='proportional',
                                  ticks=volume_range,
                                  boundaries=None,
                                  format='%1i')
        plt.show()
コード例 #4
0
    def volume_shift(self, volume_range=np.arange(-2.0, 2.0, 0.1)):
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 1)

        volumes = self.phonopy_qha._qha._volumes
        energies = self.phonopy_qha._qha._electronic_energies

        free_energy = np.load('free_energy.npy')
        temperatures = np.load('temperatures.npy')
        cv = np.load('cv.npy')
        entropy = np.load('entropy.npy')

        for i in volume_range:
            volumesi = np.array(volumes) + i
            print volumesi

            phonopy_qha = PhonopyQHA(volumesi,
                                     energies,
                                     eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                                     temperatures=temperatures,
                                     free_energy=free_energy,
                                     cv=cv,
                                     entropy=entropy,
                                     t_max=self.fc_fit.get_temperature_range()[-1],
                                     verbose=False)

            cp = phonopy_qha.get_heat_capacity_P_numerical()
            import matplotlib.pyplot as plt
            import matplotlib.colors as colors

            cNorm = colors.Normalize(vmin=volume_range[0], vmax=volume_range[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.get_cmap('plasma'))
            ax.plot(phonopy_qha._qha._temperatures[:-3], cp, label='{}'.format(i), color=scalarMap.to_rgba(i))

        import matplotlib as mpl

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])

        mpl.colorbar.ColorbarBase(ax2, cmap=plt.cm.get_cmap('plasma'), norm=cNorm,
                                  spacing='proportional', ticks=volume_range,
                                  boundaries=None, format='%1i')
        plt.show()
コード例 #5
0
ファイル: phonopy.py プロジェクト: zbwang/atomate
def get_phonopy_qha(energies, volumes, force_constants, structure, t_min, t_step, t_max, mesh, eos,
                      pressure=0):
    """
    Return phonopy QHA interface.

    Args:
        energies (list):
        volumes (list):
        force_constants (list):
        structure (Structure):
        t_min (float): min temperature
        t_step (float): temperature step
        t_max (float): max temperature
        mesh (list/tuple): reciprocal space density
        eos (str): equation of state used for fitting the energies and the volumes.
            options supported by phonopy: vinet, murnaghan, birch_murnaghan
        pressure (float): in GPa, optional.

    Returns:
        PhonopyQHA
    """
    from phonopy import Phonopy
    from phonopy.structure.atoms import Atoms as PhonopyAtoms
    from phonopy import PhonopyQHA
    from phonopy.units import EVAngstromToGPa

    phon_atoms = PhonopyAtoms(symbols=[str(s.specie) for s in structure],
                              scaled_positions=structure.frac_coords,
                              cell=structure.lattice.matrix)
    scell = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
    phonon = Phonopy(phon_atoms, scell)
    # compute the required phonon thermal properties
    temperatures = []
    free_energy = []
    entropy = []
    cv = []
    for f in force_constants:
        phonon.set_force_constants(-np.array(f))
        phonon.set_mesh(list(mesh))
        phonon.set_thermal_properties(t_step=t_step, t_min=t_min, t_max=t_max)
        t, g, e, c = phonon.get_thermal_properties()
        temperatures.append(t)
        free_energy.append(g)
        entropy.append(e)
        cv.append(c)

    # add pressure contribution
    energies = np.array(energies) + np.array(volumes) * pressure / EVAngstromToGPa
    # quasi-harmonic approx
    return PhonopyQHA(volumes, energies, eos=eos, temperatures=temperatures[0],
                      free_energy=np.array(free_energy).T, cv=np.array(cv).T,
                      entropy=np.array(entropy).T, t_max=np.max(temperatures[0]))
コード例 #6
0
ファイル: qha.py プロジェクト: atztogo/phonondb
 def __init__(self,
              volumes,
              electronic_energies,
              temperatures,
              free_energy,
              cv,
              entropy,
              eos='vinet',
              t_max=1000.0,
              Z=1,
              verbose=True):
     self._qha = PhonopyQHA(volumes,
                            electronic_energies,
                            eos=eos,
                            temperatures=temperatures,
                            free_energy=fe_phonon,
                            cv=cv,
                            entropy=entropy,
                            t_max=t_max,
                            verbose=True)
     self._Z = Z
コード例 #7
0
ファイル: Al-QHA.py プロジェクト: atztogo/phonopy
cv = []
fe = []
for index in range(-5,6):
    filename = "thermal_properties.yaml-%d" % index
    print("Reading %s" % filename)
    thermal_properties = yaml.load(open(filename),
                                  Loader=Loader)['thermal_properties']
    temperatures = [v['temperature'] for v in thermal_properties]
    cv.append([v['heat_capacity'] for v in thermal_properties])
    entropy.append([v['entropy'] for v in thermal_properties])
    fe.append([v['free_energy'] for v in thermal_properties])
    
qha = PhonopyQHA(volumes,
                 energies,
                 temperatures=temperatures,
                 free_energy=np.transpose(fe),
                 cv=np.transpose(cv),
                 entropy=np.transpose(entropy),
                 t_max=400,
                 verbose=True)

# qha.plot_helmholtz_volume().show()
# qha.plot_volume_temperature().show()
qha.plot_thermal_expansion().show()
# plot = qha.plot_volume_expansion()
# if plot:
#     plot.show()
# qha.plot_gibbs_temperature().show()
# qha.plot_bulk_modulus_temperature().show()
# qha.plot_heat_capacity_P_numerical().show()
# qha.plot_heat_capacity_P_polyfit().show()
# qha.plot_gruneisen_temperature().show()
コード例 #8
0
cv = []
fe = []
for index in range(-5, 6):
    filename = "thermal_properties.yaml-%d" % index
    print("Reading %s" % filename)
    thermal_properties = yaml.load(open(filename), Loader=Loader)["thermal_properties"]
    temperatures = [v["temperature"] for v in thermal_properties]
    cv.append([v["heat_capacity"] for v in thermal_properties])
    entropy.append([v["entropy"] for v in thermal_properties])
    fe.append([v["free_energy"] for v in thermal_properties])

qha = PhonopyQHA(
    volumes,
    energies,
    temperatures=temperatures,
    free_energy=np.transpose(fe),
    cv=np.transpose(cv),
    entropy=np.transpose(entropy),
    t_max=400,
    verbose=True,
)

# qha.plot_helmholtz_volume().show()
# qha.plot_volume_temperature().show()
qha.plot_thermal_expansion().show()
# plot = qha.plot_volume_expansion()
# if plot:
#     plot.show()
# qha.plot_gibbs_temperature().show()
# qha.plot_bulk_modulus_temperature().show()
# qha.plot_heat_capacity_P_numerical().show()
# qha.plot_heat_capacity_P_polyfit().show()
コード例 #9
0
def qha_prediction(wf, interval, min, max, use_all_data=True):
    # max = wf.get_attribute('max')
    # min = wf.get_attribute('min')

    wf_complete_list = []
    for step_name in ['pressure_expansions', 'collect_data']:
        if wf.get_step(step_name):
            wf_complete_list += list(
                wf.get_step(step_name).get_sub_workflows())

    wf_complete_list += list(
        wf.get_step('start').get_sub_workflows()[0].get_step(
            'start').get_sub_workflows())

    if use_all_data:
        # check data is stable
        good = [
            wf_test.get_attribute('pressure') for wf_test in wf_complete_list
            if check_dos_stable(wf_test, tol=1e-6)
        ]
        good = np.sort(good)

        test_pressures = np.array(good)
        test_pressures = test_pressures[np.unique(
            np.round(test_pressures,
                     decimals=4), return_index=True)[1]].tolist()
    else:
        test_pressures = np.arange(min, max, interval).tolist()

    volumes = []
    stresses = []
    electronic_energies = []
    temperatures = []
    fe_phonon = []
    entropy = []
    cv = []
    if True:
        for wf_test in wf_complete_list:
            for pressure in test_pressures:
                if wf_test.get_state() == 'FINISHED':
                    if np.isclose(wf_test.get_attribute('pressure'),
                                  pressure,
                                  atol=interval / 4,
                                  rtol=0):
                        thermal_properties = wf_test.get_result(
                            'thermal_properties')
                        optimized_data = wf_test.get_result(
                            'optimized_structure_data')
                        final_structure = wf_test.get_result('final_structure')

                        electronic_energies.append(optimized_data.dict.energy)
                        volumes.append(final_structure.get_cell_volume())
                        stresses.append(pressure)
                        temperatures = thermal_properties.get_array(
                            'temperature')
                        fe_phonon.append(
                            thermal_properties.get_array('free_energy'))
                        entropy.append(thermal_properties.get_array('entropy'))
                        cv.append(thermal_properties.get_array('cv'))

    if False:
        test_pressures = []
        for wf_test in wf_complete_list:
            if wf_test.get_state() != 'ERROR':
                repeated = False
                for p in test_pressures:
                    if np.isclose(wf_test.get_attribute('pressure'),
                                  p,
                                  atol=interval / 4,
                                  rtol=0):
                        repeated = True

                if not repeated:
                    test_pressures.append(wf_test.get_attribute('pressure'))

                    thermal_properties = wf_test.get_result(
                        'thermal_properties')
                    optimized_data = wf_test.get_result(
                        'optimized_structure_data')
                    final_structure = wf_test.get_result('final_structure')

                    electronic_energies.append(optimized_data.dict.energy)
                    volumes.append(final_structure.get_cell_volume())
                    temperatures = thermal_properties.get_array('temperature')
                    fe_phonon.append(
                        thermal_properties.get_array('free_energy'))
                    entropy.append(thermal_properties.get_array('entropy'))
                    cv.append(thermal_properties.get_array('cv'))

    if len(stresses) < 5:
        # raise Exception('Not enough points for QHA prediction')
        return None

    sort_index = np.argsort(volumes)

    stresses = np.array(stresses)[sort_index]
    volumes = np.array(volumes)[sort_index]
    electronic_energies = np.array(electronic_energies)[sort_index]
    temperatures = np.array(temperatures)
    fe_phonon = np.array(fe_phonon).T[:, sort_index]
    entropy = np.array(entropy).T[:, sort_index]
    cv = np.array(cv).T[:, sort_index]

    # Calculate QHA properties
    phonopy_qha = PhonopyQHA(
        np.array(volumes),
        np.array(electronic_energies),
        eos="vinet",
        temperatures=np.array(temperatures),
        free_energy=np.array(fe_phonon),
        cv=np.array(cv),
        entropy=np.array(entropy),
        # t_max=options.t_max,
        verbose=False)

    # Get data
    volume_temperature = phonopy_qha.get_volume_temperature()

    from scipy.optimize import curve_fit, OptimizeWarning
    try:

        # Fit to an exponential equation
        def fitting_function(x, a, b, c):
            return np.exp(-b * (x + a)) + c

        p_b = 0.1
        p_c = -200
        p_a = -np.log(-p_c) / p_b - volumes[0]

        popt, pcov = curve_fit(fitting_function,
                               volumes,
                               stresses,
                               p0=[p_a, p_b, p_c],
                               maxfev=100000)
        min_stresses = fitting_function(volume_temperature, *popt)

    except OptimizeWarning:
        fit_vs = np.polyfit(volumes, stresses, 2)
        min_stresses = np.array(
            [np.polyval(fit_vs, i) for i in volume_temperature])


#    if (np.max(min_stresses) - np.min(min_stresses)) < 1:
#        return None

    tolerance = 0.8
    addition = (np.max(min_stresses) - np.min(min_stresses)) * tolerance
    return np.min(min_stresses) - addition, np.max(min_stresses) + addition
コード例 #10
0
    def collect_data(self):

        energies = []
        volumes = []
        # Get the calculations from workflow
        from itertools import chain

        #      wf_list = list(chain(self.get_step(self.volume_expansions).get_sub_workflows(),
        #                self.get_step(self.start).get_sub_workflows()))

        wf_list = self.get_step(self.volume_expansions).get_sub_workflows()
        for wf in wf_list:
            dos = wf.get_result('dos').get_array('total_dos')
            #            self.append_to_report('DOS')
            #            self.append_to_report('{}'.format(dos.tolist()))
            energy = wf.get_result(
                'optimized_structure_data').get_dict()['energy']
            volume = wf.get_result('final_structure').get_cell_volume()
            self.append_to_report('{} {}'.format(volume, energy))
            energies.append(energy)
            volumes.append(volume)

        import numpy as np
        #       data = ArrayData()
        #       data.set_array('energy', np.array(energies))
        #       data.set_array('volume', np.array(volumes))
        #       data.store()
        #       self.add_result('data', data)

        volumes = []
        electronic_energies = []
        fe_phonon = []
        entropy = []
        cv = []

        thermal_list = []
        structures = []
        optimized_data = []

        inline_params = {}

        wf_list = list(
            chain(
                self.get_step(self.volume_expansions).get_sub_workflows(),
                self.get_step(self.start).get_sub_workflows()))

        i = 0
        for wf in wf_list:
            # Check if suitable for qha (no imaginary frequencies in DOS)
            try:
                freq = wf.get_result('dos').get_array('frequency')
                dos = wf.get_result('dos').get_array('total_dos')
            except:
                continue

            mask_neg = np.ma.masked_less(freq, 0.0).mask
            mask_pos = np.ma.masked_greater(freq, 0.0).mask
            int_neg = -np.trapz(np.multiply(dos[mask_neg], freq[mask_neg]),
                                x=freq[mask_neg])
            int_pos = np.trapz(np.multiply(dos[mask_pos], freq[mask_pos]),
                               x=freq[mask_pos])

            if int_neg / int_pos > 1e-6:
                volume = wf.get_result('final_structure').get_cell_volume()
                self.append_to_report(
                    'Volume {} not suitable for QHA (imaginary frequencies in DOS), skipping it'
                    .format(volume))
                continue
        #    print ('int_neg: {} int_pos: {}  rel: {}'.format(int_neg, int_pos, int_neg/int_pos))

        # Get necessary data
            thermal_list.append(wf.get_result('thermal_properties'))
            structures.append(wf.get_result('final_structure'))
            optimized_data.append(wf.get_result('optimized_structure_data'))

            electronic_energies.append(
                wf.get_result('optimized_structure_data').get_dict()['energy'])
            volumes.append(wf.get_result('final_structure').get_cell_volume())
            #           fe_phonon.append(wf.get_result('thermal_properties').get_array('free_energy'))
            #           entropy.append(wf.get_result('thermal_properties').get_array('entropy'))
            #           cv.append(wf.get_result('thermal_properties').get_array('cv'))
            temperatures = wf.get_result('thermal_properties').get_array(
                'temperature')

            temperature_fit = np.arange(
                0, 1001,
                10)  #[100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
            fe_phonon.append(
                np.interp(
                    temperature_fit, temperatures,
                    wf.get_result('thermal_properties').get_array(
                        'free_energy')))
            entropy.append(
                np.interp(
                    temperature_fit, temperatures,
                    wf.get_result('thermal_properties').get_array('entropy')))
            cv.append(
                np.interp(temperature_fit, temperatures,
                          wf.get_result('thermal_properties').get_array('cv')))
            temperatures = temperature_fit

            i += 1

#            inline_params['structure_{}'.format(i)] = wf.get_result('final_structure')
#            inline_params['optimized_data_{}'.format(i)] = wf.get_result('optimized_structure_data')
#            inline_params['thermal_properties_{}'.format(i)] = wf.get_result('thermal_properties')
#            self.append_to_report('accepted: {} {}'.format(i, wf.get_result('thermal_properties').pk))

#       entropy = []
#       cv = []
#       fe_phonon = []
#       temperatures = None

#       volumes = [value.get_cell_volume() for key, value in inline_params.items() if 'structure' in key.lower()]
#       electronic_energies = [value.get_dict()['energy'] for key, value in inline_params.items() if 'optimized_data' in key.lower()]
#
#        thermal_properties_list = [key for key, value in inline_params.items() if 'thermal_properties' in key.lower()]

#        for key in thermal_properties_list:
#            thermal_properties = inline_params[key]
#            fe_phonon.append(thermal_properties.get_array('free_energy'))
#            entropy.append(thermal_properties.get_array('entropy'))
#            cv.append(thermal_properties.get_array('cv'))
#            temperatures = thermal_properties.get_array('temperature')

        from phonopy import PhonopyQHA
        import numpy as np

        # Arrange data sorted by volume and transform them to numpy array
        sort_index = np.argsort(volumes)

        volumes = np.array(volumes)[sort_index]
        electronic_energies = np.array(electronic_energies)[sort_index]
        temperatures = np.array(temperatures)
        fe_phonon = np.array(fe_phonon).T[:, sort_index]
        entropy = np.array(entropy).T[:, sort_index]
        cv = np.array(cv).T[:, sort_index]

        opt = np.argmin(electronic_energies)

        # Check minimum energy volume is within the data
        if np.ma.masked_less_equal(volumes, volumes[opt]).mask.all():
            self.append_to_report(
                'higher volume structures are necessary to compute')

        if np.ma.masked_greater_equal(volumes, volumes[opt]).mask.all():
            self.append_to_report(
                'Lower volume structures are necessary to compute')

        self.append_to_report('Dimensions T{} : FE{}'.format(
            len(temperatures), len(fe_phonon)))

        # Calculate QHA
        phonopy_qha = PhonopyQHA(
            np.array(volumes),
            np.array(electronic_energies),
            eos="vinet",
            temperatures=np.array(temperatures),
            free_energy=np.array(fe_phonon),
            cv=np.array(cv),
            entropy=np.array(entropy),
            #                         t_max=options.t_max,
            verbose=False)

        #Get data
        qha_temperatures = phonopy_qha._qha._temperatures[:phonopy_qha._qha.
                                                          _max_t_index]
        helmholtz_volume = phonopy_qha.get_helmholtz_volume()
        thermal_expansion = phonopy_qha.get_thermal_expansion()
        volume_temperature = phonopy_qha.get_volume_temperature()
        heat_capacity_P_numerical = phonopy_qha.get_heat_capacity_P_numerical()
        volume_expansion = phonopy_qha.get_volume_expansion()
        gibbs_temperature = phonopy_qha.get_gibbs_temperature()

        qha_output = ArrayData()
        qha_output.set_array('temperature', np.array(qha_temperatures))
        qha_output.set_array('helmholtz_volume', np.array(helmholtz_volume))
        qha_output.set_array('thermal_expansion', np.array(thermal_expansion))
        qha_output.set_array('volume_temperature',
                             np.array(volume_temperature))
        qha_output.set_array('heat_capacity_P_numerical',
                             np.array(heat_capacity_P_numerical))
        qha_output.set_array('volume_expansion', np.array(volume_expansion))
        qha_output.set_array('gibbs_temperature', np.array(gibbs_temperature))
        qha_output.store()

        # Test to leave something on folder
        #        phonopy_qha.plot_pdf_bulk_modulus_temperature()
        #        import matplotlib
        #       matplotlib.use('Agg')
        repo_path = self._repo_folder.abspath
        data_folder = self.current_folder.get_subfolder('DATA_FILES')
        data_folder.create()

        #   phonopy_qha.plot_pdf_bulk_modulus_temperature(filename=repo_path + '/bulk_modulus-temperature.pdf')
        phonopy_qha.write_bulk_modulus_temperature(filename='bm')
        file = open('bm')
        data_folder.create_file_from_filelike(file, 'bulk_modulus-temperature')

        #        qha_results = calculate_qha_inline(**inline_params)[1]

        self.append_to_report('QHA properties calculated and retrieved')
        self.add_result('qha', qha_output)

        data = ArrayData()
        data.set_array('energy', np.array(electronic_energies))
        data.set_array('volume', np.array(volumes))
        data.store()
        self.add_result('data', data)

        self.append_to_report('Finishing workflow_workflow')
        self.next(self.exit)
コード例 #11
0
ファイル: Al-QHA.py プロジェクト: supersonic594/phonopy
cv = []
fe = []
for index in range(-5, 6):
    filename = "thermal_properties.yaml-%d" % index
    print "Reading", filename
    thermal_properties = yaml.load(open(filename),
                                   Loader=Loader)['thermal_properties']
    temperatures = [v['temperature'] for v in thermal_properties]
    cv.append([v['heat_capacity'] for v in thermal_properties])
    entropy.append([v['entropy'] for v in thermal_properties])
    fe.append([v['free_energy'] for v in thermal_properties])

qha = PhonopyQHA(volumes,
                 energies,
                 temperatures=temperatures,
                 free_energy=np.transpose(fe),
                 cv=np.transpose(cv),
                 entropy=np.transpose(entropy),
                 t_max=400,
                 verbose=True)

# qha.plot_helmholtz_volume().show()
# qha.plot_volume_temperature().show()
# qha.plot_thermal_expansion().show()
# plot = qha.plot_volume_expansion()
# if plot:
#     plot.show()
# qha.plot_gibbs_temperature().show()
# qha.plot_bulk_modulus_temperature().show()
# qha.plot_heat_capacity_P_numerical().show()
# qha.plot_heat_capacity_P_polyfit().show()
qha.plot_gruneisen_temperature().show()
コード例 #12
0
ファイル: qha.py プロジェクト: atztogo/phonondb
class QHA:
    def __init__(self,
                 volumes,
                 electronic_energies,
                 temperatures,
                 free_energy,
                 cv,
                 entropy,
                 eos='vinet',
                 t_max=1000.0,
                 Z=1,
                 verbose=True):
        self._qha = PhonopyQHA(volumes,
                               electronic_energies,
                               eos=eos,
                               temperatures=temperatures,
                               free_energy=fe_phonon,
                               cv=cv,
                               entropy=entropy,
                               t_max=t_max,
                               verbose=True)
        self._Z = Z


    def run(self):
        self._set_mesh(distance=distance)
        if self._run_mesh_sampling():
            self._run_gruneisen()
            return True
        else:
            return False

    def get_lattice(self):
        return self._lattice

    def get_mesh(self):
        return self._mesh

    def get_mesh_gruneisen(self):
        return self._gruneisen_mesh

    def plot(self, plt, thin_number=10):
        fig = plt.figure()
        fig.subplots_adjust(left=0.09, right=0.97, bottom=0.09, top=0.95)
        
        plt1 = fig.add_subplot(2, 3, 1)
        plt1.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_volume_temperature(plt=plt)

        plt2 = fig.add_subplot(2, 3, 2)
        plt2.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_thermal_expansion(plt=plt)

        plt3 = fig.add_subplot(2, 3, 3)
        plt3.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_bulk_modulus_temperature(plt=plt,
                                                ylabel="Bulk modulus (GPa)")

        plt4 = fig.add_subplot(2, 3, 4)
        plt4.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_heat_capacity_P_polyfit(plt=plt, Z=self._Z)

        plt5 = fig.add_subplot(2, 3, 5)
        plt5.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_gibbs_temperature(plt=plt,
                                         ylabel='Gibbs free energy (eV)')

        plt6 = fig.add_subplot(2, 3, 6)
        plt6.tick_params(axis='both', which='major', labelsize=10.5)
        self._qha.plot_helmholtz_volume(thin_number=thin_number,
                                        plt=plt,
                                        ylabel='Free energy (eV)')
        
    def save_figure(self, plt):
        plt.savefig("qha.png")
コード例 #13
0
ファイル: gibbs.py プロジェクト: samblau/atomate
def get_gibbs(structure,
              db_file,
              eos="vinet",
              t_step=10,
              t_min=0,
              t_max=1000,
              mesh=(20, 20, 20),
              plot=False):
    # other eos options: birch_murnaghan, murnaghan
    # The physical units of V and T are \AA^3 and K, respectively.
    # The unit of eV for Helmholtz and Gibbs energies,
    # J/K/mol for C_V and entropy, GPa for for bulk modulus and pressure are used.
    from phonopy import PhonopyQHA

    phonon = get_phonopy(structure)
    energies, volumes, force_constants = get_data(
        db_file,
        query={
            "task_label": {
                "$regex": "gibbs*"
            },
            "formula_pretty": structure.composition.reduced_formula
        })

    temperatures = []
    free_energy = []
    entropy = []
    cv = []

    for f in force_constants:
        phonon.set_force_constants(-np.array(f))
        phonon.set_mesh(list(mesh))
        phonon.set_thermal_properties(t_step=t_step, t_min=t_min, t_max=t_max)
        t, g, e, c = phonon.get_thermal_properties()
        temperatures.append(t)
        free_energy.append(g)
        entropy.append(e)
        cv.append(c)

    phonopy_qha = PhonopyQHA(volumes,
                             energies,
                             eos=eos,
                             temperatures=temperatures[0],
                             free_energy=np.array(free_energy).T,
                             cv=np.array(cv).T,
                             entropy=np.array(entropy).T,
                             t_max=np.max(temperatures[0]))

    # gibbs free energy
    max_t_index = phonopy_qha._qha._max_t_index
    G = phonopy_qha.get_gibbs_temperature()[:max_t_index]
    T = phonopy_qha._qha._temperatures[:max_t_index]
    if plot:
        import warnings
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            import matplotlib.pyplot as plt
            plt.plot(T, G)
            plt.savefig("Gibbs.pdf")
            plt.show()
            #phonopy_qha.plot_qha(thin_number=10, volume_temp_exp=None).show()
    else:
        return T, G
コード例 #14
0
def test_QHA_Si():
    """Test of QHA calculation by Si."""
    indices = list(range(11))
    phonopy_qha = PhonopyQHA(
        volumes=ev_vs_v[indices, 0],
        electronic_energies=ev_vs_v[indices, 1],
        eos="vinet",
        temperatures=temperatures,
        free_energy=fe_phonon[:, indices],
        cv=cv[:, indices],
        entropy=entropy[:, indices],
        t_max=1000,
        verbose=True,
    )
    t_indices = list(range(0, 101, 10))

    # Bulk modulus without phonon
    np.testing.assert_almost_equal(phonopy_qha.bulk_modulus,
                                   0.5559133052877888)

    # Thermal expansion
    np.testing.assert_allclose(
        [phonopy_qha.thermal_expansion[i] for i in t_indices],
        thermal_expansion * 1e-6,
        atol=1e-5,
    )

    # Helmholtz free energies vs volumes
    np.testing.assert_allclose(phonopy_qha.helmholtz_volume[t_indices, 0],
                               helmholtz_volume,
                               atol=1e-5)

    # Volume vs temperature
    np.testing.assert_allclose(phonopy_qha.volume_temperature[t_indices],
                               volume_temperature,
                               atol=1e-5)

    # Volume vs temperature
    np.testing.assert_allclose(phonopy_qha.gibbs_temperature[t_indices],
                               gibbs_temperature,
                               atol=1e-5)

    # Bulk modulus vs temperature
    np.testing.assert_allclose(
        phonopy_qha.bulk_modulus_temperature[t_indices],
        bulkmodulus_temperature,
        atol=1e-5,
    )

    # Cp vs temperature by numerical second derivative
    np.testing.assert_allclose(
        np.array(phonopy_qha.heat_capacity_P_numerical)[t_indices],
        cp_temperature,
        atol=0.01,
    )

    # Cp vs temperature by polynomial fittings of Cv and S
    np.testing.assert_allclose(
        np.array(phonopy_qha.heat_capacity_P_polyfit)[t_indices],
        cp_temperature_polyfit,
        atol=1e-5,
    )

    # Gruneisen parameters vs temperature
    np.testing.assert_allclose(
        np.array(phonopy_qha.gruneisen_temperature)[t_indices],
        gruneisen_temperature,
        atol=1e-5,
    )
コード例 #15
0
    def __init__(self, args, load_data=False, verbose=False, tmin=None):

        input_parameters = reading.read_parameters_from_input_file(args.input_file)

        if 'structure_file_name_outcar' in input_parameters:
            structure = reading.read_from_file_structure_outcar(input_parameters['structure_file_name_outcar'])
        else:
            structure = reading.read_from_file_structure_poscar(input_parameters['structure_file_name_poscar'])

        structure.get_data_from_dict(input_parameters)

        if 'supercell_phonon' in input_parameters:
            supercell_phonon = input_parameters['supercell_phonon']
        else:
            supercell_phonon = np.identity(3)

        structure.set_force_constants(get_force_constants_from_file(file_name=input_parameters['force_constants_file_name'],
                                                                    fc_supercell=supercell_phonon))

        if '_mesh_phonopy' in input_parameters:
            mesh = input_parameters['_mesh_phonopy']
        else:
            mesh = [20, 20, 20] # Default
            print ('mesh set to: {}'.format(mesh))

        if 'bands' in input_parameters is None:
            self._bands =  structure.get_path_using_seek_path()
        else:
            self._bands = input_parameters['_band_ranges']

        volumes, energies = read_v_e(args.ev, factor=1.0, volume_factor=1.0, pressure=args.pressure)

        self._fc_fit = ForceConstantsFitting(structure,
                                       files_temperature=args.ct_data,
                                       files_volume=args.cv_data,
                                       temperatures=args.temperatures,
                                       volumes=volumes,
                                       mesh=mesh,
                                       ref_temperature=args.ref_temperature,
                                       fitting_order=args.order,
                                       tmin=tmin,
                                       use_NAC=True)

        if not load_data:
            temperatures = self._fc_fit.get_temperature_range()

            free_energy = []
            entropy = []
            cv = []
            for v, e in zip(volumes, energies):
                print ('Volume: {} Ang.      Energy(U): {} eV'.format(v, e))
                tp_data = self._fc_fit.get_thermal_properties(volume=v)
                free_energy.append(tp_data[0])
                entropy.append(tp_data[1])
                cv.append(tp_data[2])

            free_energy = np.array(free_energy).T
            entropy = np.array(entropy).T
            cv = np.array(cv).T

            np.save('free_energy.npy', free_energy)
            np.save('temperatures.npy', temperatures)
            np.save('cv.npy', cv)
            np.save('entropy.npy', entropy)
        else:
            free_energy = np.load('free_energy.npy')
            temperatures = np.load('temperatures.npy')
            cv = np.load('cv.npy')
            entropy = np.load('entropy.npy')

        self.phonopy_qha = PhonopyQHA(volumes,
                                 energies,
                                 eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                                 temperatures=temperatures,
                                 free_energy=free_energy,
                                 cv=cv,
                                 entropy=entropy,
                                 t_max=self.fc_fit.get_temperature_range()[-1],
                                 verbose=False)

        # Write data files to disk
        self.phonopy_qha.write_bulk_modulus_temperature()
        self.phonopy_qha.write_gibbs_temperature()
        self.phonopy_qha.write_heat_capacity_P_numerical()
        self.phonopy_qha.write_gruneisen_temperature()
        self.phonopy_qha.write_thermal_expansion()
        self.phonopy_qha.write_helmholtz_volume()
        self.phonopy_qha.write_volume_expansion()
        self.phonopy_qha.write_volume_temperature()

        if verbose:
            self.phonopy_qha.plot_qha().show()
コード例 #16
0
class QuasiparticlesQHA():
    def __init__(self, args, load_data=False, verbose=False, tmin=None):

        input_parameters = reading.read_parameters_from_input_file(args.input_file)

        if 'structure_file_name_outcar' in input_parameters:
            structure = reading.read_from_file_structure_outcar(input_parameters['structure_file_name_outcar'])
        else:
            structure = reading.read_from_file_structure_poscar(input_parameters['structure_file_name_poscar'])

        structure.get_data_from_dict(input_parameters)

        if 'supercell_phonon' in input_parameters:
            supercell_phonon = input_parameters['supercell_phonon']
        else:
            supercell_phonon = np.identity(3)

        structure.set_force_constants(get_force_constants_from_file(file_name=input_parameters['force_constants_file_name'],
                                                                    fc_supercell=supercell_phonon))

        if '_mesh_phonopy' in input_parameters:
            mesh = input_parameters['_mesh_phonopy']
        else:
            mesh = [20, 20, 20] # Default
            print ('mesh set to: {}'.format(mesh))

        if 'bands' in input_parameters is None:
            self._bands =  structure.get_path_using_seek_path()
        else:
            self._bands = input_parameters['_band_ranges']

        volumes, energies = read_v_e(args.ev, factor=1.0, volume_factor=1.0, pressure=args.pressure)

        self._fc_fit = ForceConstantsFitting(structure,
                                       files_temperature=args.ct_data,
                                       files_volume=args.cv_data,
                                       temperatures=args.temperatures,
                                       volumes=volumes,
                                       mesh=mesh,
                                       ref_temperature=args.ref_temperature,
                                       fitting_order=args.order,
                                       tmin=tmin,
                                       use_NAC=True)

        if not load_data:
            temperatures = self._fc_fit.get_temperature_range()

            free_energy = []
            entropy = []
            cv = []
            for v, e in zip(volumes, energies):
                print ('Volume: {} Ang.      Energy(U): {} eV'.format(v, e))
                tp_data = self._fc_fit.get_thermal_properties(volume=v)
                free_energy.append(tp_data[0])
                entropy.append(tp_data[1])
                cv.append(tp_data[2])

            free_energy = np.array(free_energy).T
            entropy = np.array(entropy).T
            cv = np.array(cv).T

            np.save('free_energy.npy', free_energy)
            np.save('temperatures.npy', temperatures)
            np.save('cv.npy', cv)
            np.save('entropy.npy', entropy)
        else:
            free_energy = np.load('free_energy.npy')
            temperatures = np.load('temperatures.npy')
            cv = np.load('cv.npy')
            entropy = np.load('entropy.npy')

        self.phonopy_qha = PhonopyQHA(volumes,
                                 energies,
                                 eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                                 temperatures=temperatures,
                                 free_energy=free_energy,
                                 cv=cv,
                                 entropy=entropy,
                                 t_max=self.fc_fit.get_temperature_range()[-1],
                                 verbose=False)

        # Write data files to disk
        self.phonopy_qha.write_bulk_modulus_temperature()
        self.phonopy_qha.write_gibbs_temperature()
        self.phonopy_qha.write_heat_capacity_P_numerical()
        self.phonopy_qha.write_gruneisen_temperature()
        self.phonopy_qha.write_thermal_expansion()
        self.phonopy_qha.write_helmholtz_volume()
        self.phonopy_qha.write_volume_expansion()
        self.phonopy_qha.write_volume_temperature()

        if verbose:
            self.phonopy_qha.plot_qha().show()

    # Designed for test only
    def volume_shift(self, volume_range=np.arange(-2.0, 2.0, 0.1)):
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 1)

        volumes = self.phonopy_qha._qha._volumes
        energies = self.phonopy_qha._qha._electronic_energies

        free_energy = np.load('free_energy.npy')
        temperatures = np.load('temperatures.npy')
        cv = np.load('cv.npy')
        entropy = np.load('entropy.npy')

        for i in volume_range:
            volumesi = np.array(volumes) + i
            print volumesi

            phonopy_qha = PhonopyQHA(volumesi,
                                     energies,
                                     eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                                     temperatures=temperatures,
                                     free_energy=free_energy,
                                     cv=cv,
                                     entropy=entropy,
                                     t_max=self.fc_fit.get_temperature_range()[-1],
                                     verbose=False)

            cp = phonopy_qha.get_heat_capacity_P_numerical()
            import matplotlib.pyplot as plt
            import matplotlib.colors as colors

            cNorm = colors.Normalize(vmin=volume_range[0], vmax=volume_range[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.get_cmap('plasma'))
            ax.plot(phonopy_qha._qha._temperatures[:-3], cp, label='{}'.format(i), color=scalarMap.to_rgba(i))

        import matplotlib as mpl

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])

        mpl.colorbar.ColorbarBase(ax2, cmap=plt.cm.get_cmap('plasma'), norm=cNorm,
                                  spacing='proportional', ticks=volume_range,
                                  boundaries=None, format='%1i')
        plt.show()

    def plot_dos_gradient(self):

        import matplotlib.pyplot as plt
        import matplotlib.colors as colors
        import matplotlib.colorbar as colorbar

        volumes = self.phonopy_qha.get_volume_temperature()
        temperatures = self.fc_fit.get_temperature_range()

        fig, ax = plt.subplots(1,1)
        for t, v in zip(temperatures[::40], volumes[::20]):
            print ('temperature: {} K'.format(t))
            dos = self.fc_fit.get_dos(t, v)
            cNorm = colors.Normalize(vmin=temperatures[0], vmax=temperatures[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.get_cmap('plasma'))
            ax.plot(dos[0], dos[1], color=scalarMap.to_rgba(t))

        plt.suptitle('Phonon density of states')
        plt.xlabel('Frequency [THz]')

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])
        colorbar.ColorbarBase(ax2, cmap=plt.cm.get_cmap('plasma'), norm=cNorm,
                              spacing='proportional', ticks=temperatures[::40],
                              boundaries=None, format='%1i')

        plt.show()

    def plot_band_structure_gradient(self, tmin=300, tmax=1600, tstep=100):

        import matplotlib.pyplot as plt
        import matplotlib.colors as colors
        import matplotlib.colorbar as colorbar

        def replace_list(text_string):
            substitutions = {'GAMMA': u'$\Gamma$',
                             }

            for item in substitutions.iteritems():
                text_string = text_string.replace(item[0], item[1])
            return text_string


        volumes = self.phonopy_qha.get_volume_temperature()
        cNorm = colors.Normalize(vmin=tmin, vmax=tmax)

        fig, ax = plt.subplots(1,1)
        for t in np.arange(tmin, tmax, tstep):
            print ('temperature: {} K'.format(t))
            v = self.get_volume_at_temperature(t)
            scalarMap = plt.cm.ScalarMappable(norm=cNorm, cmap=plt.cm.get_cmap('plasma'))
            band_data = self.fc_fit.get_band_structure(t, v, band_ranges=self._bands['ranges'])

            for i, freq in enumerate(band_data[1]):
                ax.plot(band_data[1][i], band_data[2][i], color=scalarMap.to_rgba(t))

                # plt.axes().get_xaxis().set_visible(False)


        #plt.axes().get_xaxis().set_ticks([])
        plt.ylabel('Frequency [THz]')
        plt.xlabel('Wave vector')

        plt.xlim([0, band_data[1][-1][-1]])
        plt.axhline(y=0, color='k', ls='dashed')
        plt.suptitle('Phonon dispersion')

        if 'labels' in self._bands:
            plt.rcParams.update({'mathtext.default': 'regular'})
            labels = self._bands['labels']

            labels_e = []
            x_labels = []
            for i in range(len(band_data[1])):
                if labels[i][0] == labels[i - 1][1]:
                    labels_e.append(replace_list(labels[i][0]))
                else:
                    labels_e.append(
                        replace_list(labels[i - 1][1]) + '/' + replace_list(labels[i][0]))
                x_labels.append(band_data[1][i][0])
            x_labels.append(band_data[1][-1][-1])
            labels_e.append(replace_list(labels[-1][1]))
            labels_e[0] = replace_list(labels[0][0])
            plt.xticks(x_labels, labels_e, rotation='horizontal')

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])
        colorbar.ColorbarBase(ax2, cmap=plt.cm.get_cmap('plasma'), norm=cNorm,
                              spacing='proportional', ticks=np.arange(tmin, tmax, tstep),
                              boundaries=None, format='%1i')

        plt.show()

    def get_volume_at_temperature(self, temperature):

        temperatures = self.get_qha_temperatures()
        volumes = self.phonopy_qha.get_volume_temperature()
        volume = np.interp(temperature, temperatures, volumes)

        return volume

    def plot_band_structure_constant_pressure(self, temperature=300, external_data=None):

        import matplotlib.pyplot as plt

        def replace_list(text_string):
            substitutions = {'GAMMA': u'$\Gamma$',
                             }

            for item in substitutions.iteritems():
                text_string = text_string.replace(item[0], item[1])
            return text_string

        volume = self.get_volume_at_temperature(temperature)
        fig, ax = plt.subplots(1,1)
        band_data = self.fc_fit.get_band_structure(temperature, volume, band_ranges=self._bands['ranges'])

        for i, freq in enumerate(band_data[1]):
            ax.plot(band_data[1][i], band_data[2][i], color='r')

        #plt.axes().get_xaxis().set_ticks([])
        plt.ylabel('Frequency [THz]')
        plt.xlabel('Wave vector')

        plt.xlim([0, band_data[1][-1][-1]])
        plt.axhline(y=0, color='k', ls='dashed')
        plt.suptitle('Phonon dispersion')

        if 'labels' in self._bands:
            plt.rcParams.update({'mathtext.default': 'regular'})
            labels = self._bands['labels']

            labels_e = []
            x_labels = []
            for i in range(len(band_data[1])):
                if labels[i][0] == labels[i - 1][1]:
                    labels_e.append(replace_list(labels[i][0]))
                else:
                    labels_e.append(
                        replace_list(labels[i - 1][1]) + '/' + replace_list(labels[i][0]))
                x_labels.append(band_data[1][i][0])
            x_labels.append(band_data[1][-1][-1])
            labels_e.append(replace_list(labels[-1][1]))
            labels_e[0] = replace_list(labels[0][0])
            plt.xticks(x_labels, labels_e, rotation='horizontal')

        ax.plot(external_data[:, 0], external_data[:, 1], 'o', color='b')
        plt.show()

    def get_qha_temperatures(self):
        max_t_index = self.phonopy_qha._qha._get_max_t_index(self.phonopy_qha._qha._temperatures)
        temperatures = self.phonopy_qha._qha._temperatures[:max_t_index]

        return temperatures

    def get_FC_constant_pressure(self):
        temperatures = self.get_qha_temperatures()
        volumes = self.phonopy_qha.get_volume_temperature()

        for t, v in zip(temperatures[::20], volumes[::20]):
            fc = self.fc_fit.get_total_force_constants(temperature=t, volume=v)
            write_FORCE_CONSTANTS(fc.get_array(), filename='FC_{}'.format(t))

    def get_total_shift_constant_pressure(self, qpoint=(0, 0, 0)):

        qindex = self.fc_fit.qpoint_to_index(qpoint)

        volumes = self.phonopy_qha.get_volume_temperature()
        temperatures = self.get_qha_temperatures()
        h_frequencies, ev = self.fc_fit.get_harmonic_frequencies_and_eigenvectors()

        chk_shift_matrix = []
        for v, t in zip(volumes, temperatures):
            total_shifts = self.fc_fit.get_total_shifts(volume=v, temperature=t)

            chk_shift_matrix.append(total_shifts)
        chk_shift_matrix = np.array(chk_shift_matrix).T

        return chk_shift_matrix[:, qindex]

    def plot_total_shift_constant_pressure(self, qpoint=(0, 0, 0), branch=None):

        import matplotlib.pyplot as plt

        temperatures = self.get_qha_temperatures()
        chk_shift_matrix = self.get_total_shift_constant_pressure(qpoint=qpoint)

        plt.suptitle('Total frequency shift at wave vector={} (relative to {} K)'.format(qpoint, self.fc_fit.ref_temperature))
        plt.xlabel('Temperature [K]')
        plt.ylabel('Frequency shift [THz]')
        if branch is None:
            plt.plot(temperatures, chk_shift_matrix.T, '-')
        else:
            plt.title('Branch {}'.format(branch))
            plt.plot(temperatures, chk_shift_matrix[branch].T, '-')
        plt.show()

    @property
    def fc_fit(self):
        return self._fc_fit
コード例 #17
0
def calculate_qha_inline(**kwargs):

    from phonopy import PhonopyQHA
    import numpy as np

    #    thermal_properties_list = [key for key, value in kwargs.items() if 'thermal_properties' in key.lower()]
    #    optimized_structure_data_list = [key for key, value in kwargs.items() if 'optimized_structure_data' in key.lower()]
    structure_list = [
        key for key, value in kwargs.items()
        if 'final_structure' in key.lower()
    ]

    volumes = []
    electronic_energies = []
    fe_phonon = []
    entropy = []
    cv = []

    for i in range(len(structure_list)):
        # volumes.append(kwargs.pop(key).get_cell_volume())
        volumes.append(
            kwargs.pop('final_structure_{}'.format(i)).get_cell_volume())
        electronic_energies.append(
            kwargs.pop('optimized_structure_data_{}'.format(i)).dict.energy)
        thermal_properties = kwargs.pop('thermal_properties_{}'.format(i))
        temperatures = thermal_properties.get_array('temperature')
        fe_phonon.append(thermal_properties.get_array('free_energy'))
        entropy.append(thermal_properties.get_array('entropy'))
        cv.append(thermal_properties.get_array('cv'))

    sort_index = np.argsort(volumes)

    temperatures = np.array(temperatures)
    volumes = np.array(volumes)[sort_index]
    electronic_energies = np.array(electronic_energies)[sort_index]
    fe_phonon = np.array(fe_phonon).T[:, sort_index]
    entropy = np.array(entropy).T[:, sort_index]
    cv = np.array(cv).T[:, sort_index]

    print volumes
    print electronic_energies
    print temperatures
    print fe_phonon
    print cv
    print entropy

    # Calculate QHA
    phonopy_qha = PhonopyQHA(
        volumes,
        electronic_energies,
        eos="vinet",
        temperatures=temperatures,
        free_energy=fe_phonon,
        cv=cv,
        entropy=entropy,
        #                         t_max=options.t_max,
        verbose=True)

    try:
        qha_output = ArrayData()
        qha_output.set_array('temperature', np.array([1, 2, 3, 4]))
        qha_output.store()
    except:
        print qha_output
        exit()

    # Get data
    qha_temperatures = phonopy_qha._qha._temperatures[:phonopy_qha._qha.
                                                      _max_t_index]
    helmholtz_volume = phonopy_qha.get_helmholtz_volume()
    thermal_expansion = phonopy_qha.get_thermal_expansion()
    volume_temperature = phonopy_qha.get_volume_temperature()
    heat_capacity_P_numerical = phonopy_qha.get_heat_capacity_P_numerical()
    volume_expansion = phonopy_qha.get_volume_expansion()
    gibbs_temperature = phonopy_qha.get_gibbs_temperature()

    qha_output = ArrayData()

    qha_output.set_array('temperature', np.array(qha_temperatures))
    qha_output.set_array('helmholtz_volume', np.array(helmholtz_volume))
    qha_output.set_array('thermal_expansion', np.array(thermal_expansion))
    qha_output.set_array('volume_temperature', np.array(volume_temperature))
    qha_output.set_array('heat_capacity_P_numerical',
                         np.array(heat_capacity_P_numerical))
    qha_output.set_array('volume_expansion', np.array(volume_expansion))
    qha_output.set_array('gibbs_temperature', np.array(gibbs_temperature))

    qha_output.store()

    return {'qha_data': qha_output}
コード例 #18
0
    def _calculate_quasiharmonic_phonon(self):
        energies = []
        volumes = []
        phonons = []
        T = []
        F = []
        S = []
        Cv = []
        for i, task in enumerate(self._tasks):
            energies.append(task.get_energy())
            volumes.append(task.get_cell().get_volume())
            if self._sampling_mesh is not None:
                phonon = task.get_phonon()
                phonon.set_mesh(self._sampling_mesh)
                phonon.set_thermal_properties(
                    t_step=self._t_step, t_max=self._t_max + self._t_step * 2.5, t_min=self._t_min
                )
                (temperatures, free_energies, entropies, heat_capacities) = phonon.get_thermal_properties()
                T.append(temperatures)
                F.append(free_energies)
                S.append(entropies)
                Cv.append(heat_capacities)
                phonon.write_yaml_thermal_properties("thermal_properties-%02d.yaml" % i)

        if self._sampling_mesh:
            qha = PhonopyQHA(
                volumes,
                energies,
                temperatures=T[0],
                free_energy=np.transpose(F),
                cv=np.transpose(Cv),
                entropy=np.transpose(S),
                t_max=self._t_max,
                verbose=False,
            )

            qha.write_helmholtz_volume()
            qha.write_volume_temperature()
            qha.write_thermal_expansion()
            qha.write_volume_expansion()
            qha.write_gibbs_temperature()
            qha.write_bulk_modulus_temperature()
            qha.write_heat_capacity_P_numerical()
            qha.write_heat_capacity_P_polyfit()
            qha.write_gruneisen_temperature()

        w = open("e-v.dat", "w")
        w.write("#   cell volume        energy of cell other than phonon\n")
        for e, v in zip(energies, volumes):
            w.write("%20.13f %20.13f\n" % (v, e))

        self._quasiharmonic_phonon = None
コード例 #19
0
    def _calculate_quasiharmonic_phonon(self):
        energies = []
        volumes = []
        phonons = []
        T = []
        F = []
        S = []
        Cv = []
        for i, task in enumerate(self._tasks):
            energies.append(task.get_energy())
            volumes.append(task.get_cell().get_volume())
            if self._sampling_mesh is not None:
                phonon = task.get_phonon()
                phonon.set_mesh(self._sampling_mesh)
                phonon.set_thermal_properties(t_step=self._t_step,
                                              t_max=self._t_max +
                                              self._t_step * 2.5,
                                              t_min=self._t_min)
                (temperatures, free_energies, entropies,
                 heat_capacities) = phonon.get_thermal_properties()
                T.append(temperatures)
                F.append(free_energies)
                S.append(entropies)
                Cv.append(heat_capacities)
                phonon.write_yaml_thermal_properties(
                    "thermal_properties-%02d.yaml" % i)

        if self._sampling_mesh:
            qha = PhonopyQHA(volumes,
                             energies,
                             temperatures=T[0],
                             free_energy=np.transpose(F),
                             cv=np.transpose(Cv),
                             entropy=np.transpose(S),
                             t_max=self._t_max,
                             verbose=False)

            qha.write_helmholtz_volume()
            qha.write_volume_temperature()
            qha.write_thermal_expansion()
            qha.write_volume_expansion()
            qha.write_gibbs_temperature()
            qha.write_bulk_modulus_temperature()
            qha.write_heat_capacity_P_numerical()
            qha.write_heat_capacity_P_polyfit()
            qha.write_gruneisen_temperature()

        w = open("e-v.dat", 'w')
        w.write("#   cell volume        energy of cell other than phonon\n")
        for e, v in zip(energies, volumes):
            w.write("%20.13f %20.13f\n" % (v, e))

        self._quasiharmonic_phonon = None
コード例 #20
0
ファイル: Al-QHA.py プロジェクト: Johnson-Wang/phonopy
cv = []
fe = []
for index in range(-5,6):
    filename = "thermal_properties.yaml-%d" % index
    print "Reading", filename
    thermal_properties = yaml.load(open(filename),
                                  Loader=Loader)['thermal_properties']
    temperatures = [v['temperature'] for v in thermal_properties]
    cv.append([v['heat_capacity'] for v in thermal_properties])
    entropy.append([v['entropy'] for v in thermal_properties])
    fe.append([v['free_energy'] for v in thermal_properties])
    
qha = PhonopyQHA(volumes,
                 energies,
                 temperatures=temperatures,
                 free_energy=np.transpose(fe),
                 cv=np.transpose(cv),
                 entropy=np.transpose(entropy),
                 t_max=400,
                 verbose=True)

# qha.plot_helmholtz_volume().show()
# qha.plot_volume_temperature().show()
# qha.plot_thermal_expansion().show()
# plot = qha.plot_volume_expansion()
# if plot:
#     plot.show()
# qha.plot_gibbs_temperature().show()
# qha.plot_bulk_modulus_temperature().show()
# qha.plot_heat_capacity_P_numerical().show()
# qha.plot_heat_capacity_P_polyfit().show()
qha.plot_gruneisen_temperature().show()
コード例 #21
0
volumes = np.array(volumes)[sort_index]
electronic_energies = np.array(electronic_energies)[sort_index]
temperatures = np.array(temperatures)
fe_phonon = np.array(fe_phonon).T[:, sort_index]
entropy = np.array(entropy).T[:, sort_index]
cv = np.array(cv).T[:, sort_index]

opt = np.argmin(electronic_energies)

# Calculate QHA
phonopy_qha = PhonopyQHA(
    np.array(volumes),
    np.array(electronic_energies),
    eos="vinet",
    temperatures=np.array(temperatures),
    free_energy=np.array(fe_phonon),
    cv=np.array(cv),
    entropy=np.array(entropy),
    #                         t_max=options.t_max,
    verbose=False)

# Get data
qha_temperatures = phonopy_qha._qha._temperatures[:phonopy_qha._qha.
                                                  _max_t_index]
helmholtz_volume = phonopy_qha.get_helmholtz_volume()
thermal_expansion = phonopy_qha.get_thermal_expansion()
volume_temperature = phonopy_qha.get_volume_temperature()
heat_capacity_P_numerical = phonopy_qha.get_heat_capacity_P_numerical()
volume_expansion = phonopy_qha.get_volume_expansion()
gibbs_temperature = phonopy_qha.get_gibbs_temperature()
コード例 #22
0
def calculate_qha_inline(**kwargs):

    from phonopy import PhonopyQHA
    from phonopy.structure.atoms import Atoms as PhonopyAtoms
    import numpy as np

    #   structures = kwargs.pop('structures')
    #   optimized_data = kwargs.pop('optimized_data')
    #   thermodyamic_properties = kwargs.pop('thermodyamic_properties')

    entropy = []
    cv = []
    #  volumes = []
    fe_phonon = []
    temperatures = None

    #   structures = [key for key, value in kwargs.items() if 'structure' in key.lower()]
    #   for key in structures:
    #       volumes.append(kwargs.pop(key).get_cell_volume())

    volumes = [
        value.get_cell_volume() for key, value in kwargs.items()
        if 'structure' in key.lower()
    ]
    electronic_energies = [
        value.get_dict()['energy'] for key, value in kwargs.items()
        if 'optimized_data' in key.lower()
    ]

    thermal_properties_list = [
        key for key, value in kwargs.items()
        if 'thermal_properties' in key.lower()
    ]

    for key in thermal_properties_list:
        thermal_properties = kwargs[key]
        fe_phonon.append(thermal_properties.get_array('free_energy'))
        entropy.append(thermal_properties.get_array('entropy'))
        cv.append(thermal_properties.get_array('cv'))
        temperatures = thermal_properties.get_array('temperature')

    # Arrange data sorted by volume and transform them to numpy array
    sort_index = np.argsort(volumes)

    volumes = np.array(volumes)[sort_index]
    electronic_energies = np.array(electronic_energies)[sort_index]
    temperatures = np.array(temperatures)
    fe_phonon = np.array(fe_phonon).T[:, sort_index]
    entropy = np.array(entropy).T[:, sort_index]
    cv = np.array(cv).T[:, sort_index]

    opt = np.argmin(electronic_energies)

    # Check minimum energy volume is within the data
    if np.ma.masked_less_equal(volumes, volumes[opt]).mask.all():
        print('higher volume structures are necessary to compute')
        exit()
    if np.ma.masked_greater_equal(volumes, volumes[opt]).mask.all():
        print('Lower volume structures are necessary to compute')
        exit()

#   print volumes.shape
#   print electronic_energies.shape
#   print temperatures.shape
#   print fe_phonon.shape
#   print cv.shape
#   print entropy.shape

    qha_output = ArrayData()
    qha_output.set_array('volumes', volumes)
    qha_output.set_array('electronic_energies', electronic_energies)
    qha_output.set_array('temperatures', temperatures)
    qha_output.set_array('fe_phonon', fe_phonon)
    qha_output.set_array('cv', cv)
    qha_output.set_array('entropy', entropy)

    # Calculate QHA
    phonopy_qha = PhonopyQHA(
        np.array(volumes),
        np.array(electronic_energies),
        eos="vinet",
        temperatures=np.array(temperatures),
        free_energy=np.array(fe_phonon),
        cv=np.array(cv),
        entropy=np.array(entropy),
        #                         t_max=options.t_max,
        verbose=False)

    #   print phonopy_qha.get_gibbs_temperature()

    qha_output = ArrayData()
    qha_output.set_array('volumes', volumes)
    qha_output.set_array('electronic_energies', electronic_energies)
    qha_output.set_array('temperatures', temperatures)
    qha_output.set_array('fe_phonon', fe_phonon)
    qha_output.set_array('cv', cv)
    qha_output.set_array('entropy', entropy)

    return {'qha_output': qha_output}

    #Get data
    helmholtz_volume = phonopy_qha.get_helmholtz_volume()
    thermal_expansion = phonopy_qha.get_thermal_expansion()
    volume_temperature = phonopy_qha.get_volume_temperature()
    heat_capacity_P_numerical = phonopy_qha.get_heat_capacity_P_numerical()
    volume_expansion = phonopy_qha.get_volume_expansion()
    gibbs_temperature = phonopy_qha.get_gibbs_temperature()

    qha_output = ArrayData()
    #    qha_output.set_array('temperature', temperatures)
    #    qha_output.set_array('helmholtz_volume', np.array(helmholtz_volume))
    #    qha_output.set_array('thermal_expansion', np.array(thermal_expansion))
    #    qha_output.set_array('volume_temperature', np.array(volume_temperature))
    #    qha_output.set_array('heat_capacity_P_numerical', np.array(heat_capacity_P_numerical))
    #    qha_output.set_array('volume_expansion', np.array(volume_expansion))
    #    qha_output.set_array('gibbs_temperature', np.array(gibbs_temperature))
    #   qha_output.store()

    return {'qha_output': qha_output}
コード例 #23
0
    def __init__(self, args, load_data=False, verbose=False, tmin=None):

        input_parameters = reading.read_parameters_from_input_file(
            args.input_file)

        if 'structure_file_name_outcar' in input_parameters:
            structure = reading.read_from_file_structure_outcar(
                input_parameters['structure_file_name_outcar'])
        else:
            structure = reading.read_from_file_structure_poscar(
                input_parameters['structure_file_name_poscar'])

        structure.get_data_from_dict(input_parameters)

        if 'supercell_phonon' in input_parameters:
            supercell_phonon = input_parameters['supercell_phonon']
        else:
            supercell_phonon = np.identity(3)

        structure.set_force_constants(
            get_force_constants_from_file(
                file_name=input_parameters['force_constants_file_name'],
                fc_supercell=supercell_phonon))

        if '_mesh_phonopy' in input_parameters:
            mesh = input_parameters['_mesh_phonopy']
        else:
            mesh = [20, 20, 20]  # Default
            print('mesh set to: {}'.format(mesh))

        if 'bands' in input_parameters is None:
            self._bands = structure.get_path_using_seek_path()
        else:
            self._bands = input_parameters['_band_ranges']

        volumes, energies = read_v_e(args.ev,
                                     factor=1.0,
                                     volume_factor=1.0,
                                     pressure=args.pressure)

        self._fc_fit = ForceConstantsFitting(
            structure,
            files_temperature=args.ct_data,
            files_volume=args.cv_data,
            temperatures=args.temperatures,
            volumes=volumes,
            mesh=mesh,
            ref_temperature=args.ref_temperature,
            fitting_order=args.order,
            tmin=tmin,
            use_NAC=True)

        if not load_data:
            temperatures = self._fc_fit.get_temperature_range()

            free_energy = []
            entropy = []
            cv = []
            for v, e in zip(volumes, energies):
                print('Volume: {} Ang.      Energy(U): {} eV'.format(v, e))
                tp_data = self._fc_fit.get_thermal_properties(volume=v)
                free_energy.append(tp_data[0])
                entropy.append(tp_data[1])
                cv.append(tp_data[2])

            free_energy = np.array(free_energy).T
            entropy = np.array(entropy).T
            cv = np.array(cv).T

            np.save('free_energy.npy', free_energy)
            np.save('temperatures.npy', temperatures)
            np.save('cv.npy', cv)
            np.save('entropy.npy', entropy)
        else:
            free_energy = np.load('free_energy.npy')
            temperatures = np.load('temperatures.npy')
            cv = np.load('cv.npy')
            entropy = np.load('entropy.npy')

        self.phonopy_qha = PhonopyQHA(
            volumes,
            energies,
            eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
            temperatures=temperatures,
            free_energy=free_energy,
            cv=cv,
            entropy=entropy,
            t_max=self.fc_fit.get_temperature_range()[-1],
            verbose=False)

        # Write data files to disk
        self.phonopy_qha.write_bulk_modulus_temperature()
        self.phonopy_qha.write_gibbs_temperature()
        self.phonopy_qha.write_heat_capacity_P_numerical()
        self.phonopy_qha.write_gruneisen_temperature()
        self.phonopy_qha.write_thermal_expansion()
        self.phonopy_qha.write_helmholtz_volume()
        self.phonopy_qha.write_volume_expansion()
        self.phonopy_qha.write_volume_temperature()

        if verbose:
            self.phonopy_qha.plot_qha().show()
コード例 #24
0
class QuasiparticlesQHA():
    def __init__(self, args, load_data=False, verbose=False, tmin=None):

        input_parameters = reading.read_parameters_from_input_file(
            args.input_file)

        if 'structure_file_name_outcar' in input_parameters:
            structure = reading.read_from_file_structure_outcar(
                input_parameters['structure_file_name_outcar'])
        else:
            structure = reading.read_from_file_structure_poscar(
                input_parameters['structure_file_name_poscar'])

        structure.get_data_from_dict(input_parameters)

        if 'supercell_phonon' in input_parameters:
            supercell_phonon = input_parameters['supercell_phonon']
        else:
            supercell_phonon = np.identity(3)

        structure.set_force_constants(
            get_force_constants_from_file(
                file_name=input_parameters['force_constants_file_name'],
                fc_supercell=supercell_phonon))

        if '_mesh_phonopy' in input_parameters:
            mesh = input_parameters['_mesh_phonopy']
        else:
            mesh = [20, 20, 20]  # Default
            print('mesh set to: {}'.format(mesh))

        if 'bands' in input_parameters is None:
            self._bands = structure.get_path_using_seek_path()
        else:
            self._bands = input_parameters['_band_ranges']

        volumes, energies = read_v_e(args.ev,
                                     factor=1.0,
                                     volume_factor=1.0,
                                     pressure=args.pressure)

        self._fc_fit = ForceConstantsFitting(
            structure,
            files_temperature=args.ct_data,
            files_volume=args.cv_data,
            temperatures=args.temperatures,
            volumes=volumes,
            mesh=mesh,
            ref_temperature=args.ref_temperature,
            fitting_order=args.order,
            tmin=tmin,
            use_NAC=True)

        if not load_data:
            temperatures = self._fc_fit.get_temperature_range()

            free_energy = []
            entropy = []
            cv = []
            for v, e in zip(volumes, energies):
                print('Volume: {} Ang.      Energy(U): {} eV'.format(v, e))
                tp_data = self._fc_fit.get_thermal_properties(volume=v)
                free_energy.append(tp_data[0])
                entropy.append(tp_data[1])
                cv.append(tp_data[2])

            free_energy = np.array(free_energy).T
            entropy = np.array(entropy).T
            cv = np.array(cv).T

            np.save('free_energy.npy', free_energy)
            np.save('temperatures.npy', temperatures)
            np.save('cv.npy', cv)
            np.save('entropy.npy', entropy)
        else:
            free_energy = np.load('free_energy.npy')
            temperatures = np.load('temperatures.npy')
            cv = np.load('cv.npy')
            entropy = np.load('entropy.npy')

        self.phonopy_qha = PhonopyQHA(
            volumes,
            energies,
            eos="vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
            temperatures=temperatures,
            free_energy=free_energy,
            cv=cv,
            entropy=entropy,
            t_max=self.fc_fit.get_temperature_range()[-1],
            verbose=False)

        # Write data files to disk
        self.phonopy_qha.write_bulk_modulus_temperature()
        self.phonopy_qha.write_gibbs_temperature()
        self.phonopy_qha.write_heat_capacity_P_numerical()
        self.phonopy_qha.write_gruneisen_temperature()
        self.phonopy_qha.write_thermal_expansion()
        self.phonopy_qha.write_helmholtz_volume()
        self.phonopy_qha.write_volume_expansion()
        self.phonopy_qha.write_volume_temperature()

        if verbose:
            self.phonopy_qha.plot_qha().show()

    # Designed for test only
    def volume_shift(self, volume_range=np.arange(-2.0, 2.0, 0.1)):
        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(1, 1)

        volumes = self.phonopy_qha._qha._volumes
        energies = self.phonopy_qha._qha._electronic_energies

        free_energy = np.load('free_energy.npy')
        temperatures = np.load('temperatures.npy')
        cv = np.load('cv.npy')
        entropy = np.load('entropy.npy')

        for i in volume_range:
            volumesi = np.array(volumes) + i
            print volumesi

            phonopy_qha = PhonopyQHA(
                volumesi,
                energies,
                eos=
                "vinet",  # options: 'vinet', 'murnaghan' or 'birch_murnaghan'
                temperatures=temperatures,
                free_energy=free_energy,
                cv=cv,
                entropy=entropy,
                t_max=self.fc_fit.get_temperature_range()[-1],
                verbose=False)

            cp = phonopy_qha.get_heat_capacity_P_numerical()
            import matplotlib.pyplot as plt
            import matplotlib.colors as colors

            cNorm = colors.Normalize(vmin=volume_range[0],
                                     vmax=volume_range[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm,
                                              cmap=plt.cm.get_cmap('plasma'))
            ax.plot(phonopy_qha._qha._temperatures[:-3],
                    cp,
                    label='{}'.format(i),
                    color=scalarMap.to_rgba(i))

        import matplotlib as mpl

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])

        mpl.colorbar.ColorbarBase(ax2,
                                  cmap=plt.cm.get_cmap('plasma'),
                                  norm=cNorm,
                                  spacing='proportional',
                                  ticks=volume_range,
                                  boundaries=None,
                                  format='%1i')
        plt.show()

    def plot_dos_gradient(self):

        import matplotlib.pyplot as plt
        import matplotlib.colors as colors
        import matplotlib.colorbar as colorbar

        volumes = self.phonopy_qha.get_volume_temperature()
        temperatures = self.fc_fit.get_temperature_range()

        fig, ax = plt.subplots(1, 1)
        for t, v in zip(temperatures[::40], volumes[::20]):
            print('temperature: {} K'.format(t))
            dos = self.fc_fit.get_dos(t, v)
            cNorm = colors.Normalize(vmin=temperatures[0],
                                     vmax=temperatures[-1])
            scalarMap = plt.cm.ScalarMappable(norm=cNorm,
                                              cmap=plt.cm.get_cmap('plasma'))
            ax.plot(dos[0], dos[1], color=scalarMap.to_rgba(t))

        plt.suptitle('Phonon density of states')
        plt.xlabel('Frequency [THz]')

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])
        colorbar.ColorbarBase(ax2,
                              cmap=plt.cm.get_cmap('plasma'),
                              norm=cNorm,
                              spacing='proportional',
                              ticks=temperatures[::40],
                              boundaries=None,
                              format='%1i')

        plt.show()

    def plot_band_structure_gradient(self, tmin=300, tmax=1600, tstep=100):

        import matplotlib.pyplot as plt
        import matplotlib.colors as colors
        import matplotlib.colorbar as colorbar

        def replace_list(text_string):
            substitutions = {
                'GAMMA': u'$\Gamma$',
            }

            for item in substitutions.iteritems():
                text_string = text_string.replace(item[0], item[1])
            return text_string

        volumes = self.phonopy_qha.get_volume_temperature()
        cNorm = colors.Normalize(vmin=tmin, vmax=tmax)

        fig, ax = plt.subplots(1, 1)
        for t in np.arange(tmin, tmax, tstep):
            print('temperature: {} K'.format(t))
            v = self.get_volume_at_temperature(t)
            scalarMap = plt.cm.ScalarMappable(norm=cNorm,
                                              cmap=plt.cm.get_cmap('plasma'))
            band_data = self.fc_fit.get_band_structure(
                t, v, band_ranges=self._bands['ranges'])

            for i, freq in enumerate(band_data[1]):
                ax.plot(band_data[1][i],
                        band_data[2][i],
                        color=scalarMap.to_rgba(t))

                # plt.axes().get_xaxis().set_visible(False)

        #plt.axes().get_xaxis().set_ticks([])
        plt.ylabel('Frequency [THz]')
        plt.xlabel('Wave vector')

        plt.xlim([0, band_data[1][-1][-1]])
        plt.axhline(y=0, color='k', ls='dashed')
        plt.suptitle('Phonon dispersion')

        if 'labels' in self._bands:
            plt.rcParams.update({'mathtext.default': 'regular'})
            labels = self._bands['labels']

            labels_e = []
            x_labels = []
            for i in range(len(band_data[1])):
                if labels[i][0] == labels[i - 1][1]:
                    labels_e.append(replace_list(labels[i][0]))
                else:
                    labels_e.append(
                        replace_list(labels[i - 1][1]) + '/' +
                        replace_list(labels[i][0]))
                x_labels.append(band_data[1][i][0])
            x_labels.append(band_data[1][-1][-1])
            labels_e.append(replace_list(labels[-1][1]))
            labels_e[0] = replace_list(labels[0][0])
            plt.xticks(x_labels, labels_e, rotation='horizontal')

        ax2 = fig.add_axes([0.93, 0.1, 0.02, 0.8])
        colorbar.ColorbarBase(ax2,
                              cmap=plt.cm.get_cmap('plasma'),
                              norm=cNorm,
                              spacing='proportional',
                              ticks=np.arange(tmin, tmax, tstep),
                              boundaries=None,
                              format='%1i')

        plt.show()

    def get_volume_at_temperature(self, temperature):

        temperatures = self.get_qha_temperatures()
        volumes = self.phonopy_qha.get_volume_temperature()
        volume = np.interp(temperature, temperatures, volumes)

        return volume

    def plot_band_structure_constant_pressure(self,
                                              temperature=300,
                                              external_data=None):

        import matplotlib.pyplot as plt

        def replace_list(text_string):
            substitutions = {
                'GAMMA': u'$\Gamma$',
            }

            for item in substitutions.iteritems():
                text_string = text_string.replace(item[0], item[1])
            return text_string

        volume = self.get_volume_at_temperature(temperature)
        fig, ax = plt.subplots(1, 1)
        band_data = self.fc_fit.get_band_structure(
            temperature, volume, band_ranges=self._bands['ranges'])

        for i, freq in enumerate(band_data[1]):
            ax.plot(band_data[1][i], band_data[2][i], color='r')

        #plt.axes().get_xaxis().set_ticks([])
        plt.ylabel('Frequency [THz]')
        plt.xlabel('Wave vector')

        plt.xlim([0, band_data[1][-1][-1]])
        plt.axhline(y=0, color='k', ls='dashed')
        plt.suptitle('Phonon dispersion')

        if 'labels' in self._bands:
            plt.rcParams.update({'mathtext.default': 'regular'})
            labels = self._bands['labels']

            labels_e = []
            x_labels = []
            for i in range(len(band_data[1])):
                if labels[i][0] == labels[i - 1][1]:
                    labels_e.append(replace_list(labels[i][0]))
                else:
                    labels_e.append(
                        replace_list(labels[i - 1][1]) + '/' +
                        replace_list(labels[i][0]))
                x_labels.append(band_data[1][i][0])
            x_labels.append(band_data[1][-1][-1])
            labels_e.append(replace_list(labels[-1][1]))
            labels_e[0] = replace_list(labels[0][0])
            plt.xticks(x_labels, labels_e, rotation='horizontal')

        ax.plot(external_data[:, 0], external_data[:, 1], 'o', color='b')
        plt.show()

    def get_qha_temperatures(self):
        max_t_index = self.phonopy_qha._qha._get_max_t_index(
            self.phonopy_qha._qha._temperatures)
        temperatures = self.phonopy_qha._qha._temperatures[:max_t_index]

        return temperatures

    def get_FC_constant_pressure(self):
        temperatures = self.get_qha_temperatures()
        volumes = self.phonopy_qha.get_volume_temperature()

        for t, v in zip(temperatures[::20], volumes[::20]):
            fc = self.fc_fit.get_total_force_constants(temperature=t, volume=v)
            write_FORCE_CONSTANTS(fc.get_array(), filename='FC_{}'.format(t))

    def get_total_shift_constant_pressure(self, qpoint=(0, 0, 0)):

        qindex = self.fc_fit.qpoint_to_index(qpoint)

        volumes = self.phonopy_qha.get_volume_temperature()
        temperatures = self.get_qha_temperatures()
        h_frequencies, ev = self.fc_fit.get_harmonic_frequencies_and_eigenvectors(
        )

        chk_shift_matrix = []
        for v, t in zip(volumes, temperatures):
            total_shifts = self.fc_fit.get_total_shifts(volume=v,
                                                        temperature=t)

            chk_shift_matrix.append(total_shifts)
        chk_shift_matrix = np.array(chk_shift_matrix).T

        return chk_shift_matrix[:, qindex]

    def plot_total_shift_constant_pressure(self,
                                           qpoint=(0, 0, 0),
                                           branch=None):

        import matplotlib.pyplot as plt

        temperatures = self.get_qha_temperatures()
        chk_shift_matrix = self.get_total_shift_constant_pressure(
            qpoint=qpoint)

        plt.suptitle(
            'Total frequency shift at wave vector={} (relative to {} K)'.
            format(qpoint, self.fc_fit.ref_temperature))
        plt.xlabel('Temperature [K]')
        plt.ylabel('Frequency shift [THz]')
        if branch is None:
            plt.plot(temperatures, chk_shift_matrix.T, '-')
        else:
            plt.title('Branch {}'.format(branch))
            plt.plot(temperatures, chk_shift_matrix[branch].T, '-')
        plt.show()

    @property
    def fc_fit(self):
        return self._fc_fit
コード例 #25
0
def calculate_qha_inline(**kwargs):

    from phonopy import PhonopyQHA
    from phonon_common import get_helmholtz_volume_from_phonopy_qha
    import numpy as np

    #    thermal_properties_list = [key for key, value in kwargs.items() if 'thermal_properties' in key.lower()]
    #    optimized_structure_data_list = [key for key, value in kwargs.items() if 'optimized_structure_data' in key.lower()]
    structure_list = [
        key for key, value in kwargs.items()
        if 'final_structure' in key.lower()
    ]

    volumes = []
    electronic_energies = []
    fe_phonon = []
    entropy = []
    cv = []

    for i in range(len(structure_list)):
        # volumes.append(kwargs.pop(key).get_cell_volume())
        volumes.append(
            kwargs.pop('final_structure_{}'.format(i)).get_cell_volume())
        electronic_energies.append(
            kwargs.pop('optimized_structure_data_{}'.format(i)).dict.energy)
        thermal_properties = kwargs.pop('thermal_properties_{}'.format(i))
        temperatures = thermal_properties.get_array('temperature')
        fe_phonon.append(thermal_properties.get_array('free_energy'))
        entropy.append(thermal_properties.get_array('entropy'))
        cv.append(thermal_properties.get_array('cv'))

    sort_index = np.argsort(volumes)

    temperatures = np.array(temperatures)
    volumes = np.array(volumes)[sort_index]
    electronic_energies = np.array(electronic_energies)[sort_index]
    fe_phonon = np.array(fe_phonon).T[:, sort_index]
    entropy = np.array(entropy).T[:, sort_index]
    cv = np.array(cv).T[:, sort_index]

    # Calculate QHA
    phonopy_qha = PhonopyQHA(
        np.array(volumes),
        np.array(electronic_energies),
        eos="vinet",
        temperatures=np.array(temperatures),
        free_energy=np.array(fe_phonon),
        cv=np.array(cv),
        entropy=np.array(entropy),
        #                         t_max=options.t_max,
        verbose=False)

    # Get data
    free_energy_volume_fitting = get_helmholtz_volume_from_phonopy_qha(
        phonopy_qha)

    qha_temperatures = phonopy_qha._qha._temperatures[:phonopy_qha._qha.
                                                      _max_t_index]
    helmholtz_volume = phonopy_qha.get_helmholtz_volume()
    thermal_expansion = phonopy_qha.get_thermal_expansion()
    volume_temperature = phonopy_qha.get_volume_temperature()
    heat_capacity_P_numerical = phonopy_qha.get_heat_capacity_P_numerical()
    volume_expansion = phonopy_qha.get_volume_expansion()
    gibbs_temperature = phonopy_qha.get_gibbs_temperature()

    qha_output = ArrayData()

    qha_output.set_array('temperatures', np.array(qha_temperatures))
    #qha_output.set_array('helmholtz_volume', np.array(helmholtz_volume))
    qha_output.set_array('thermal_expansion', np.array(thermal_expansion))
    qha_output.set_array('volume_temperature', np.array(volume_temperature))
    qha_output.set_array('heat_capacity_P_numerical',
                         np.array(heat_capacity_P_numerical))
    qha_output.set_array('volume_expansion', np.array(volume_expansion))
    qha_output.set_array('gibbs_temperature', np.array(gibbs_temperature))

    qha_output.set_array('helmholtz_volume_points',
                         np.array(free_energy_volume_fitting['points']))
    qha_output.set_array('helmholtz_volume_fit',
                         np.array(free_energy_volume_fitting['fit']))
    qha_output.set_array('helmholtz_volume_minimum',
                         np.array(free_energy_volume_fitting['minimum']))

    return {'qha_output': qha_output}