def polar_map(hist: Histogram2D, ax: Axes, *, show_zero: bool = True, show_colorbar: bool = True, **kwargs): """Polar map of polar histograms. Similar to map, but supports less parameters.""" data = get_data(hist, cumulative=False, flatten=True, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) rpos, phipos = (arr.flatten() for arr in hist.get_bin_left_edges()) dr, dphi = (arr.flatten() for arr in hist.get_bin_widths()) rmax, _ = (arr.flatten() for arr in hist.get_bin_right_edges()) bar_args = {} if "zorder" in kwargs: bar_args["zorder"] = kwargs.pop("zorder") alphas = _get_alpha_data(cmap_data, kwargs) if np.isscalar(alphas): alphas = np.ones_like(data) * alphas for i in range(len(rpos)): if data[i] > 0 or show_zero: bin_color = colors[i] # TODO: align = "edge" bars = ax.bar(phipos[i], dr[i], width=dphi[i], bottom=rpos[i], align='edge', color=bin_color, edgecolor=kwargs.get("grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5), alpha=alphas[i], **bar_args) ax.set_rmax(rmax.max()) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)
def bar3d(h2: Histogram2D, ax: Axes3D, **kwargs): """Plot of 2D histograms as 3D boxes.""" density = kwargs.pop("density", False) data = get_data(h2, cumulative=False, flatten=True, density=density) if "cmap" in kwargs: cmap = _get_cmap(kwargs) _, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) else: colors = kwargs.pop("color", kwargs.pop("c", "blue")) xpos, ypos = (arr.flatten() for arr in h2.get_bin_centers()) zpos = np.zeros_like(ypos) dx, dy = (arr.flatten() for arr in h2.get_bin_widths()) _add_labels(ax, h2, kwargs) ax.bar3d(xpos, ypos, zpos, dx, dy, data, color=colors, **kwargs) ax.set_zlabel("density" if density else "frequency")
def map(h2: Histogram2D, ax: Axes, *, show_zero: bool = True, show_values: bool = False, show_colorbar: bool = True, x=None, y=None, **kwargs): """Coloured-rectangle plot of 2D histogram. Parameters ---------- show_zero : Whether to show coloured box for bins with 0 frequency (otherwise background). show_values : Whether to show labels with frequencies/densities in the middle of the bin text_color : Optional Colour of text descriptions text_alpha : Optional[float] Alpha for the text labels only x : Optional[Callable] Transformation of x bin coordinates y : Optional[Callable] Transformation of y bin coordinates zorder : float z-order in the axis (higher number above lower) See Also -------- image, polar_map, surface_map Notes ----- If you transform axes using x or y parameters, the deduction of axis limits does not work well automatically. Please, make sure to attend to it yourself. The densities in transformed maps are calculated from original bins. """ # Detect transformation transformed = False if x is not None or y is not None: if not x: x = lambda x, y: x if not y: y = lambda x, y: y transformed = True value_format = kwargs.pop("value_format", lambda x: str(x)) # TODO: Implement correctly the text_kwargs if isinstance(value_format, str): format_str = "{0:" + value_format + "}" value_format = lambda x: format_str.format(x) rect_args = {} if "zorder" in kwargs: rect_args["zorder"] = kwargs.pop("zorder") data = get_data(h2, cumulative=False, flatten=True, density=kwargs.pop("density", False)) cmap = _get_cmap(kwargs) norm, cmap_data = _get_cmap_data(data, kwargs) colors = cmap(cmap_data) xpos, ypos = (arr.flatten() for arr in h2.get_bin_left_edges()) dx, dy = (arr.flatten() for arr in h2.get_bin_widths()) text_x, text_y = (arr.flatten() for arr in h2.get_bin_centers()) _apply_xy_lims(ax, h2, data=data, kwargs=kwargs) _add_labels(ax, h2, kwargs) ax.autoscale_view() alphas = _get_alpha_data(cmap_data, kwargs) if np.isscalar(alphas): alphas = np.ones_like(data) * alphas for i in range(len(xpos)): bin_color = colors[i] alpha = alphas[i] if data[i] != 0 or show_zero: if not transformed: rect = plt.Rectangle([xpos[i], ypos[i]], dx[i], dy[i], facecolor=bin_color, edgecolor=kwargs.get( "grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5), alpha=alpha, **rect_args) tx, ty = text_x[i], text_y[i] else: # See http://matplotlib.org/users/path_tutorial.html points = ((xpos[i], ypos[i]), (xpos[i] + dx[i], ypos[i]), (xpos[i] + dx[i], ypos[i] + dy[i]), (xpos[i], ypos[i] + dy[i]), (xpos[i], ypos[i])) verts = [(x(*p), y(*p)) for p in points] codes = [ path.Path.MOVETO, path.Path.LINETO, path.Path.LINETO, path.Path.LINETO, path.Path.CLOSEPOLY, ] rect_path = path.Path(verts, codes) rect = patches.PathPatch(rect_path, facecolor=bin_color, edgecolor=kwargs.get( "grid_color", cmap(0.5)), lw=kwargs.get("lw", 0.5), alpha=alpha, **rect_args) tx = x(text_x[i], text_y[i]) ty = y(text_x[i], text_y[i]) ax.add_patch(rect) if show_values: text = value_format(data[i]) yiq_y = np.dot(bin_color[:3], [0.299, 0.587, 0.114]) text_color = kwargs.get("text_color", None) if not text_color: if yiq_y > 0.5: text_color = (0.0, 0.0, 0.0, kwargs.get("text_alpha", alpha)) else: text_color = (1.0, 1.0, 1.0, kwargs.get("text_alpha", alpha)) ax.text(tx, ty, text, horizontalalignment='center', verticalalignment='center', color=text_color, clip_on=True, **rect_args) if show_colorbar: _add_colorbar(ax, cmap, cmap_data, norm)