コード例 #1
0
 def test_predict_self_defined_motifs_Bradi1g00260_2_p(self):
     dataset = []
     for m in phytolrr_predictor.default_train_motifs:
         dataset.append(m[:11])
     test_seq = 'MEMITMTLAVFVSCFHLPLLWSFLLQYLNFFSHSTYWKLSLVSCPVVLLSWHKLNSESLHGFARGRKYYHLSDMPSQWPGYWMVMLVLVVIMALSFISIHGQPDSHGFISIDCGYTASKQYVDSRTGLTYASDDGFIDAGLVHTVDSANLQPDLAVRYFNLRYFPSGPRNCYTFRSLTAGGKYLVRAAFGYGDYDKLNRLPTFDLYFGVNYWTTVTIVSSSTAYLFESIAVSPADFLQICLVNTGSGTPFISALDLRSLTANLYPEANVTQSMVLLSFFRDTVGFGPNRYHFGTNYQHIRFPDDPYDRIWQRYEDIASWTDLPNKSNGEIQNPPNDTYDAPSAVMRSASTPLNASAMDLSWSSDSSMSVGVNPTYILVLYFAELDASQDLRQFDVSVDNDLLLASAFSPKFLLATVLSGIVRGSGEHSISLTTTSNSVLDPLISAMEIFMVRPVNESATDSVDAWTMMTIQTKYSVKRNWVGDPCVPTSLAWDGLNCSYTPSSAPRITGLNMSSSGLVSEIDASFGQILLLQHLDLSHNSLSGSIPDFLGQLPALKFLDLSSNNLSGSIPCNLLEKSQNGLLALRVDNPNLHGDCAPRPVGSKNKI'
     matrix = pssm_matrix.calc_pssm_matrix(dataset)
     ms = phytolrr_predictor.predict(test_seq, matrix)
     ms.sort(key=lambda m: m.offset)
     ms = motifs_tools.found_no_overlapped_motifs(ms, 11)
     self.assertEqual(len(ms), 6)
コード例 #2
0
    def test_default_predict_Bradi1g00260_2_p(self):
        test_seq = 'MEMITMTLAVFVSCFHLPLLWSFLLQYLNFFSHSTYWKLSLVSCPVVLLSWHKLNSESLHGFARGRKYYHLSDMPSQWPGYWMVMLVLVVIMALSFISIHGQPDSHGFISIDCGYTASKQYVDSRTGLTYASDDGFIDAGLVHTVDSANLQPDLAVRYFNLRYFPSGPRNCYTFRSLTAGGKYLVRAAFGYGDYDKLNRLPTFDLYFGVNYWTTVTIVSSSTAYLFESIAVSPADFLQICLVNTGSGTPFISALDLRSLTANLYPEANVTQSMVLLSFFRDTVGFGPNRYHFGTNYQHIRFPDDPYDRIWQRYEDIASWTDLPNKSNGEIQNPPNDTYDAPSAVMRSASTPLNASAMDLSWSSDSSMSVGVNPTYILVLYFAELDASQDLRQFDVSVDNDLLLASAFSPKFLLATVLSGIVRGSGEHSISLTTTSNSVLDPLISAMEIFMVRPVNESATDSVDAWTMMTIQTKYSVKRNWVGDPCVPTSLAWDGLNCSYTPSSAPRITGLNMSSSGLVSEIDASFGQILLLQHLDLSHNSLSGSIPDFLGQLPALKFLDLSSNNLSGSIPCNLLEKSQNGLLALRVDNPNLHGDCAPRPVGSKNKI'
        ms = phytolrr_predictor.predict(test_seq)

        ms.sort(key=lambda m: m.offset)
        self.assertEqual(len(ms), 3)
        self.assertEqual([m.offset for m in ms], [506, 530, 554])
        numpy.testing.assert_array_almost_equal(
            [m.score for m in ms],
            [14.0695893079814, 44.675678790101, 46.0801846076546])
コード例 #3
0
    def test_default_predict_AT1G05700_1(self):
        test_seq = 'MEEFRFLYLIYSAAFALCLVVSVLAQDQSGFISIDCGIPSGSSYKDDTTGINYVSDSSFVETGVSKSIPFTAQRQLQNLRSFPEGSRNCYTLIPIQGKGKKYLIRASFMYGNYDGENGSPEFDLFLGGNIWDTVLLSNGSSIVSKEVVYLSQSENIFVCLGNKGKGTPFISTLELRFLGNDNTTYDSPNGALFFSRRWDLRSLMGSPVRYDDDVYDRIWIPRNFGYCREINTSLPVTSDNNSYSLSSLVMSTAMTPINTTRPITMTLENSDPNVRYFVYMHFAEVEDLSLKPNQTREFDISINGVTVAAGFSPKYLQTNTFFLNPESQSKIAFSLVRTPKSTLPPIVNALEIYVANSFSQSLTNQEDGDAVTSLKTSYKVKKNWHGDPCLPNDYIWEGLNCSYDSLTPPRITSLNLSSSGLTGHISSSFSNLTMIQELDLSNNGLTGDIPEFLSKLKFLRVLNLENNTLTGSVPSELLERSNTGSFSLRLGENPGLCTEISCRKSNSKK'
        ms = phytolrr_predictor.predict(test_seq)

        ms.sort(key=lambda m: m.offset)
        self.assertEqual(len(ms), 3)
        self.assertEqual([m.offset for m in ms], [410, 434, 458])
        numpy.testing.assert_array_almost_equal(
            [m.score for m in ms],
            [27.3503114204658, 39.1562104586186, 36.3811748663529])
コード例 #4
0
    def test_default_predict_AL1G15610_1(self):
        test_seq = 'METFRFLYLALFALCLIVSVLAQDQSGFISIDCGIPSGSSYKDDTTGINYVSDSSFVETGISKSIPFTSQRQLQNLRSFPEGSRNCYTLIPVQGKGRKYLIRASFMYGNYDGENDSPEFDLFLGGNIWDTVLLSNESSIVSKEVVYLSQSENIFVCLGNKGKGTPFISTLELRFLGNDNTTYDSPNGTLFFSRRWDFGSLMDSPVRYDEDVYDRIWIPRNFGYCREINTSLPVTSDNNSYSLSSLVMSTAMTPTNTTRPITMTLEDSDPNVRYFVYMHLAEVEDLSLKPNQTREFDIGINGVTVAAGFSPKYLQTNTFFLNPESQSKIVFSLVRTPKSTLPPIVNALEIYIANRVSQSLTNQEDGDAVTSLKTIYKVKKNWQGDPCLPNDYIWEGLNCSYDSLTPPRITSLNLSSSGLTGHISPSFSNLTMIQELDLSNNGLTGDIPEFLSKLKFLRVLNLEKNKLTGSVPSELLERSNSGSFLLRVGENPGLCIEISCRKSNSKK'
        ms = phytolrr_predictor.predict(test_seq)

        ms.sort(key=lambda m: m.offset)
        self.assertEqual(len(ms), 3)
        self.assertEqual([m.offset for m in ms], [407, 431, 455])
        numpy.testing.assert_array_almost_equal(
            [m.score for m in ms],
            [27.3503114204658, 39.1562104586186, 36.2951803140635])
コード例 #5
0
    def test_default_predict_evm_27_model_AmTr_v1_0_scaffold00002_363(self):
        test_seq = 'MGILFFLFALTLTLSSLSSSVFGLTQDGEALLEMKRGLNDTKGLLSNWKDTDINPCNWTRISCHLHDQRVRVINLPFLRLGGTISPSIGKITRLHRLAIHENSLHGTIPAEIGNCTELRALYLRANYLEGGIPTELGRLSNLIILDLSSNSLRGSIPPSIGHLGRLRFLNLSTNFLSGEIPKTGVLGSFGNFSFIGNLDLCGPQVQRLCKGSLGFPAVLPGHVNDDEAVPPRRATS'
        ms = phytolrr_predictor.predict(test_seq)

        ms.sort(key=lambda m: m.offset)
        self.assertEqual(len(ms), 6)
        self.assertEqual([m.offset for m in ms], [6, 69, 93, 117, 141, 165])
        numpy.testing.assert_array_almost_equal([m.score for m in ms], [
            10.7748224913081, 19.331539280432, 25.5300148879452,
            29.7083175881698, 40.8018286797862, 40.0297399657356
        ])
コード例 #6
0
def predict_seqs(seqs: List[Sequence],
                 training_dataset=None) -> List[PredictResult]:
    if training_dataset is None:
        matrix = None
    else:
        matrix = pssm_matrix.calc_pssm_matrix(training_dataset)
    rets = []
    for seq in seqs:
        ret = phytolrr_predictor.predict(seq.seq, matrix)
        if ret is None:
            raise Exception("Unexpected error, None result when predicting " +
                            seq.id)
        rets.append(PredictResult(seq, ret))
    return rets