コード例 #1
0
def plot_test_vs_validation_set(output_name, C, sigma, M, xlim=None, ylim=None, xticks=None, yticks=None):
    """
    Plot a single figure which compares the expected validation and generalization errors
    for various numbers of training samples (n), using either m=1 or m=n validation samples.
    """
    import matplotlib.pyplot as plt
    plt.ioff()
    plt.style.use('./latex-paper.mplstyle')
    plt.figure()
    ax = plt.axes()
    ax.yaxis.grid(True)

    d = pickler.load(f'categorical_K2_C{C}_sigma{sigma:.2f}_M{M}'.replace('.','_'))
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values, d.results[:,0], 'C0-', label=r'$\mathrm{e}_{\mathrm{val}}(m=n)$')
    plt.plot(x_values, d.results[:,1], 'C1-', label=r'$\mathrm{e}_{\mathrm{gen}}(m=n)$')

    d = pickler.load(f'categorical_LOO_C{C}_sigma{sigma:.2f}_M{M}'.replace('.','_'))
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values, d.results[:,0], 'C0--', label=r'$\mathrm{e}_{\mathrm{val}}(m=1)$')
    plt.plot(x_values, d.results[:,1], 'C1--', label=r'$\mathrm{e}_{\mathrm{gen}}(m=1)$')

    plt.xlabel('n')
    plt.ylabel('MSE')
    if xlim is not None:
        plt.xlim(xlim)
    if ylim is not None:
        plt.ylim(ylim)
    if xticks is not None:
        plt.xticks(xticks)
    if yticks is not None:
        plt.yticks(yticks)
    
    plt.legend(loc='best')
    simulations_framework.save_figure(output_name + f'_reps{d.n_repetitions}')
コード例 #2
0
def plot_test_vs_validation_set(subdir,
                                filename_prefix,
                                M,
                                normalize,
                                xlim=None,
                                ylim=None,
                                xticks=None,
                                yticks=None):
    """
    Plot a single figure which compares the expected validation and generalization errors
    for various numbers of training samples (n), using either m=1 or m=n validation samples.
    """
    import matplotlib.pyplot as plt
    plt.ioff()
    plt.style.use('./latex-paper.mplstyle')
    plt.figure()
    ax = plt.axes()
    ax.yaxis.grid(True)

    d = pickler.load(f'{filename_prefix}_K2_M{M}_normalize{normalize}')
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values,
             d.results[:, 0],
             'C0-',
             linewidth=1.5,
             label=r'$\mathrm{e}_{\mathrm{val}}(m=n)$')
    plt.plot(x_values,
             d.results[:, 1],
             'C1-',
             linewidth=1.5,
             label=r'$\mathrm{e}_{\mathrm{gen}}(m=n)$')

    d = pickler.load(f'{filename_prefix}_LOO_M{M}_normalize{normalize}')
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values,
             d.results[:, 0],
             'C0--',
             linewidth=1.5,
             label=r'$\mathrm{e}_{\mathrm{val}}(m=1)$')
    plt.plot(x_values,
             d.results[:, 1],
             'C1--',
             linewidth=1.5,
             label=r'$\mathrm{e}_{\mathrm{gen}}(m=1)$')

    plt.xlabel('$n$')
    plt.ylabel('MSE')
    plt.xlim(xlim if xlim is not None else [min(x_values), max(x_values)])
    if ylim is not None:
        plt.ylim(ylim)
    if xticks is not None:
        plt.xticks(xticks)
    if yticks is not None:
        plt.yticks(yticks)

    #ax.set_yscale('log')
    plt.legend(loc='best')
    output_name = f'{filename_prefix}_M{M}_normalize{normalize}_reps{d.n_repetitions}'
    save_figure(output_name, subdir=subdir)
コード例 #3
0
ファイル: processor.py プロジェクト: hosekp/data_mining_2014
 def __init__(self,name,func,need=[],needpos=[],params=None):
     self.name=name
     self.func=func
     self.need=need
     self.needpos=needpos
     self.params=params
     self.arr=pickler.load(self.name)
     self.arr2=pickler.load(self.name+"_2")
コード例 #4
0
def plot_test_vs_validation_set(filename_prefix, D, df, K_strong_columns, strong_column_multiplier, K, noise_multiplier, xlim=None, ylim=None, xticks=None, yticks=None):
    """
    Plot a single figure which compares the expected validation and generalization errors
    for various numbers of training samples (n), using either m=1 or m=n validation samples.
    """
    import matplotlib.pyplot as plt
    plt.ioff()
    plt.style.use('./latex-paper.mplstyle')
    plt.figure()
    ax = plt.axes()
    ax.yaxis.grid(True)

    d = pickler.load(f'variable_selected_linear_regression_K2_D{D}_df{df}_Kstrong{K_strong_columns}_multiplier{strong_column_multiplier}_K{K}_noisemul{noise_multiplier:.2f}')
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values, d.results[:,0], 'C0-', linewidth=1.5, label=r'$\mathrm{e}_{\mathrm{val}}(m=n)$')
    plt.plot(x_values, d.results[:,1], 'C1-', linewidth=1.5, label=r'$\mathrm{e}_{\mathrm{gen}}(m=n)$')

    d = pickler.load(f'variable_selected_linear_regression_LOO_D{D}_df{df}_Kstrong{K_strong_columns}_multiplier{strong_column_multiplier}_K{K}_noisemul{noise_multiplier:.2f}')
    x_values = [x.n_train for x in d.xs]
    plt.plot(x_values, d.results[:,0], 'C0--', linewidth=1.5, label=r'$\mathrm{e}_{\mathrm{val}}(m=1)$')
    plt.plot(x_values, d.results[:,1], 'C1--', linewidth=1.5, label=r'$\mathrm{e}_{\mathrm{gen}}(m=1)$')

    d = pickler.load(f'variable_selected_linear_regression_null_model_D{D}_df{df}_Kstrong{K_strong_columns}_multiplier{strong_column_multiplier}_noisemul{noise_multiplier:.2f}')
    null_mse = d.results[0][0]
    plt.plot([min(x_values), max(x_values)], [null_mse, null_mse], 'k:', linewidth=1.0, label='Null model')

    plt.xlabel('$n$')
    plt.ylabel('MSE')
    plt.xlim(xlim if xlim is not None else [min(x_values), max(x_values)])
    if ylim is not None:
        plt.ylim(ylim)
    if xticks is not None:
        plt.xticks(xticks)
    if yticks is not None:
        plt.yticks(yticks)
    
    plt.legend(loc='best')
    output_name = f'{filename_prefix}_D{D}_df{df}_Kstrong{K_strong_columns}_multiplier{strong_column_multiplier}_K{K}_noisemul{noise_multiplier:.2f}_reps{d.n_repetitions}'
    save_figure(output_name, f'noise_{noise_multiplier:.2f}')
コード例 #5
0
def plot_alphas_correct_vs_incorrect(p,
                                     df,
                                     sigma,
                                     with_intercept,
                                     i,
                                     bins='auto'):
    plt.figure()
    results = pickler.load(
        f'normalized_lasso_cv_pipeline_p{p}_df{df}_sigma{sigma}_intercept{with_intercept}_10FOLDCV'
    ).results[i]
    assert results.ndim == 2
    correct_alphas = results[:, 1]
    incorrect_alphas = results[:, 3]
    plt.hist([correct_alphas, incorrect_alphas],
             label=['correct', 'incorrect'],
             bins=bins)
    plt.legend()
コード例 #6
0
def read_results_with_confintervals(p, df, sigma, with_intercept):
    d = pickler.load(
        f'normalized_lasso_cv_pipeline_p{p}_df{df}_sigma{sigma}_intercept{with_intercept}_10FOLDCV'
    )
    assert d.results.shape == (len(d.xs), d.n_repetitions, 5)

    null_model_mse = np.mean(d.results[:, :, 4])

    correct_mses = np.apply_along_axis(mean_confidence_interval,
                                       axis=1,
                                       arr=d.results[:, :, 0])
    assert correct_mses.shape == (len(d.xs), 2)

    incorrect_mses = np.apply_along_axis(mean_confidence_interval,
                                         axis=1,
                                         arr=d.results[:, :, 2])
    assert incorrect_mses.shape == (len(d.xs), 2)

    n_range = d.xs

    return (d.xs, null_model_mse, correct_mses, incorrect_mses,
            d.n_repetitions)
コード例 #7
0
    r = requests.get(graph_url)
    print(r.status_code)
    print(r.json())
    if r.status_code == 200:
        result_json = json.loads(r.text)
        engagement_json = result_json.get('engagement')
        # {'engagement': {u'comment_count': 0, u'comment_plugin_count': 0, u'share_count': 0, u'reaction_count': 0}
        print(engagement_json)
        return engagement_json
    else:
        return None


base_url = 'https://www.stugknuten.com'

cottages = pickler.load('stugor_vastkusten.pickle', [])
result = []
for cottage in cottages:
    cottage_href = cottage.get('href')
    engagement = get_engagement(cottage_href)
    if engagement:
        cottage['engagement'] = engagement
        print(cottage)
        result.append(cottage)
        time.sleep(FIVE_SECONDS)
    else:
        print('NO ENGAGEMENT! ERROR! ABORT ABORT!')
        break

pickler.save('likes_vastkusten.pickle', result)
コード例 #8
0
ファイル: application.py プロジェクト: wg4568/ChatServer
 def __init__(self):
     self.messages = pickler.load("messages")
コード例 #9
0
ファイル: sort.py プロジェクト: iingemar/best-of-stugknuten
import pickler
import pprint
import json


urls = pickler.load('likes_vastkusten.pickle', [])
# {'engagement': {u'comment_count': 0, u'comment_plugin_count': 0, u'share_count': 0, u'reaction_count': 0}
sorted_urls = sorted(urls, key=lambda x: x.get('engagement').get('reaction_count'), reverse=True)


def pretty_print():
    pp = pprint.PrettyPrinter(indent=4)
    for sorted_url in sorted_urls:
        pp.pprint(sorted_url)

def to_json():
    with open('likes_vastkusten.json', 'w') as outfile:
        print('dumping ....')
        json.dump(sorted_urls, outfile, indent=4, sort_keys=True)
        print('done')

to_json()
コード例 #10
0
def unpickle_model(model):
    path = settings.models_path
    print("loading model from: " + path + model.id + ".pickle")
    loaded_model = pickler.load(path + model.id + ".pickle")
    return loaded_model