# Set up evaluation
population_size = 20

epochs = 60


def const_epochs_60(individual, gen_index, prev_evaluations):
    return epochs


# original paper
learning_rate_decay_points = [1, 149, 249]

relative_decay_points = [i / 350 for i in learning_rate_decay_points]
# parse that to out number of epochs
learning_rate_decay_points = [
    int(np.ceil(i * epochs)) for i in relative_decay_points
]

data = cga.CIFAR10()

pickling_ga.run('',
                data,
                folder,
                population_size=population_size,
                search_space=search_space,
                epoch_fn=const_epochs_60,
                learning_rate_decay_points=learning_rate_decay_points,
                fitness_punishment_per_hour=0.05)
コード例 #2
0
    start = 30
    end = maxepochs
    maxgens = 20

    # y = ax + b
    diff = end - start
    b = start
    a = diff / (maxgens - 1)

    return round(a * gen_index + b)


# original paper
learning_rate_decay_points = [1, 149, 249]

relative_decay_points = [i / 350 for i in learning_rate_decay_points]
# parse that to out number of epochs
learning_rate_decay_points = [
    int(np.ceil(i * maxepochs)) for i in relative_decay_points
]

data = cga.CIFAR10()

pickling_ga.run('',
                data,
                folder,
                population_size=population_size,
                search_space=search_space,
                epoch_fn=linear_epochs_30_70,
                learning_rate_decay_points=learning_rate_decay_points)
def const_epochs_60(individual, gen_index, prev_evaluations):
    return epochs


def create_individual():
    return cga.CNN.random_approach2(
        input_shape=data.example.shape,
        num_classes=data.num_classes,
        search_space=search_space
    )


# original paper
learning_rate_decay_points = [1, 149, 249]

relative_decay_points = [i/350 for i in learning_rate_decay_points]
# parse that to out number of epochs
learning_rate_decay_points = [int(np.ceil(i * epochs))
                              for i in relative_decay_points]


data = cga.CIFAR10()

pickling_ga.run('approach-2__', data, folder,
                population_size=population_size,
                search_space=search_space,
                epoch_fn=const_epochs_60,
                learning_rate_decay_points=learning_rate_decay_points,
                create_individual=create_individual
                )