コード例 #1
0
ファイル: test_predict_traits.py プロジェクト: adamrp/picrust
    def test_thresholded_brownian_probability(self):
        """Brownian prob should return dict of state probabilities"""
        #x = thresholded_brownian_probability(2.2755, 1001**0.5, 0.03, min_val = 0.0,increment = 1.00,trait_prob_cutoff = 1e-4)
        #lines =  ["\t".join(map(str,[k,x[k]]))+"\n" for k in sorted(x.keys())]
        #for line in lines:
        #    print line
        
        #print "Total prob:", sum(x.values())
        start_state = 3.0
        var = 30.00
        d = 0.03
        min_val = 0.0
        increment = 1.0
        trait_prob_cutoff =  1e-200

        obs = thresholded_brownian_probability(start_state,d,var,min_val,\
          increment,trait_prob_cutoff)
        #TODO: Need to calculate exact values for this minimal case 
        #with the Larson & Farber Z tables, by hand.
        
        #For now test for sanity
        
        #Test that no probabilities below threshold are included
        self.assertTrue(min(obs.values()) > trait_prob_cutoff)
        #Test that start values +1 or -1 are equal
        self.assertEqual(obs[2.0],obs[4.0])
        #Test that the start state is the highest prob value
        self.assertEqual(max(obs.values()),obs[start_state])
コード例 #2
0
    def test_thresholded_brownian_probability(self):
        """Brownian prob should return dict of state probabilities"""
        #x = thresholded_brownian_probability(2.2755, 1001**0.5, 0.03, min_val = 0.0,increment = 1.00,trait_prob_cutoff = 1e-4)
        #lines =  ["\t".join(map(str,[k,x[k]]))+"\n" for k in sorted(x.keys())]
        #for line in lines:
        #    print line
        
        #print "Total prob:", sum(x.values())
        start_state = 3.0
        var = 30.00
        d = 0.03
        min_val = 0.0
        increment = 1.0
        trait_prob_cutoff =  1e-200

        obs = thresholded_brownian_probability(start_state,d,var,min_val,\
          increment,trait_prob_cutoff)
        #TODO: Need to calculate exact values for this minimal case 
        #with the Larson & Farber Z tables, by hand.
        
        #For now test for sanity
        
        #Test that no probabilities below threshold are included
        self.assertTrue(min(obs.values()) > trait_prob_cutoff)
        #Test that start values +1 or -1 are equal
        self.assertEqual(obs[2.0],obs[4.0])
        #Test that the start state is the highest prob value
        self.assertEqual(max(obs.values()),obs[start_state])