コード例 #1
0
ファイル: network.py プロジェクト: nilinswap/neuro-evolution
    def __init__(self, inputdim, outputdim, hidden_unit_lim, rng):
        self.inputdim = inputdim
        self.outputdim = outputdim
        #self.inputarr=inputarr  #self explanatory
        self.hidden_unit_lim = hidden_unit_lim
        self.rng = rng
        rest_set, test_set = pimadataf.give_data()
        self.restx = rest_set[0]
        resty = rest_set[1]
        self.testx = test_set[0]
        testy = test_set[1]

        self.resty = np.ravel(resty)
        self.testy = np.ravel(testy)
        self.rest_setx = tf.Variable(initial_value=self.restx,
                                     name='rest_setx',
                                     dtype=tf.float32)
        self.rest_sety = tf.Variable(initial_value=self.resty,
                                     name='rest_sety',
                                     dtype=tf.int32)
        self.test_setx = tf.Variable(initial_value=self.testx,
                                     name='rest_sety',
                                     dtype=tf.float32)
        self.test_sety = tf.Variable(initial_value=self.testy,
                                     name='test_sety',
                                     dtype=tf.int32)
        #self.inputarr = inputarr
        self.inputarr = self.restx
コード例 #2
0
    def __init__(self,
                 max_no_of_hidden_units,
                 dimtup,
                 size=5,
                 limittup=(-1, 1)):

        self.size = size
        self.max_no_of_hidden_units = max_no_of_hidden_units
        self.dimtup = dimtup
        self.list_chromo = self.aux_pop(size, limittup)  #a numpy array
        self.fits_pops = []

        rest_set, test_set = pimadataf.give_data(
        )  #one time thing #RTC required here
        self.trainx = rest_set[0]
        self.trainy = rest_set[1]
        #print("hmm",self.trainy)
        self.testx = test_set[0]
        self.testy = test_set[1]
        self.net_err = network.Neterr(inputdim=self.dimtup[0],
                                      outputdim=self.dimtup[1],
                                      arr_of_net=self.list_chromo,
                                      trainx=self.trainx,
                                      trainy=self.trainy,
                                      testx=self.testx,
                                      testy=self.testy)
コード例 #3
0
	def __init__(self,rng, max_hidden_units, size=50, limittup=(-1,1)):
		self.dimtup = pimadataf.get_dimension()
		rest_set, test_set = pimadataf.give_data()
		tup = pimadataf.give_datainshared()
		self.rng=rng
		self.size = size
		self.max_hidden_units = max_hidden_units
		self.list_chromo = self.aux_pop(size, limittup) #a numpy array
		self.fits_pops = []
				
		self.trainx = rest_set[0]
		self.trainy = rest_set[1]
		self.testx = test_set[0]
		self.testy = test_set[1]
		
		self.strainx, self.strainy = tup[0]
		self.stestx, self.stesty = tup[1]
		self.net_err = Network.Neterr(inputdim=self.dimtup[0], outputdim=self.dimtup[1], arr_of_net=self.list_chromo, trainx=self.trainx, trainy=self.trainy, testx=self.testx, testy=self.testy,strainx=self.strainx, strainy=self.strainy, stestx=self.stestx, stesty=self.stesty)
		self.net_dict={} #dictionary of networks for back-propagation, one for each n_hid
コード例 #4
0
	def __init__(self,rng, max_hidden_units, size=5, limittup=(-1,1)):
		self.dimtup = pimadataf.get_dimension()
		rest_set, test_set = pimadataf.give_data()
		restx=rest_set[0]
		resty=rest_set[1]
		testx=test_set[0]
		testy=test_set[1]
		resty=np.ravel(resty)
		testy=np.ravel(testy)
		self.rng=rng
		self.size = size
		self.max_hidden_units = max_hidden_units
		self.list_chromo = self.aux_pop(size, limittup) #a numpy array
		self.fits_pops = []
		restn=538										#a flaw here ,one has to know no. of datapoints in both set before opening it(inside program)
		testn=230		
		print("here you",rest_set[1].shape)
		self.rest_setx=tf.Variable(initial_value=np.zeros((restn,self.dimtup[0])),name='rest_setx',dtype=tf.float64)
		self.rest_sety=tf.Variable(initial_value=np.zeros((restn,)),name='rest_sety',dtype=tf.int32)
		self.test_setx=tf.Variable(initial_value=np.zeros((testn,self.dimtup[0])),name='rest_sety',dtype=tf.float64)
		self.test_sety=tf.Variable(initial_value=np.zeros((testn,)),name='test_sety',dtype=tf.int32)
		if not os.path.isfile('/home/robita/forgit/neuro-evolution/05/state/tf/indep_pima/input/model.ckpt.meta'):
			

			

			rxn=self.rest_setx.assign(restx)
			ryn=self.rest_sety.assign(resty)
			txn=self.test_setx.assign(testx)
			tyn=self.test_sety.assign(testy)
			var_lis=[self.rest_setx,self.rest_sety,self.test_setx,self.test_sety]
			nodelis=[rxn,ryn,txn,tyn]
			savo=tf.train.Saver(var_list=var_lis)
			with tf.Session() as sess:
				sess.run([i for i in nodelis])
				print("saving checkpoint")
				save_path = savo.save(sess, "/home/robita/forgit/neuro-evolution/05/state/tf/indep_pima/input/model.ckpt")

		
		
		
		self.net_err = Network.Neterr(inputdim=self.dimtup[0], outputdim=self.dimtup[1], arr_of_net=self.list_chromo,rest_setx=self.rest_setx,rest_sety=self.rest_sety,test_setx=self.test_setx,test_sety=self.test_sety,rng=self.rng)
		self.net_dict={} #dictionary of networks for back-propagation, one for each n_hid