コード例 #1
0
def test_residuals_wideband_chi2(wideband_fake):
    toas, model = wideband_fake
    r = WidebandTOAResiduals(toas, model)
    rn = Residuals(toas, model)
    f = WidebandTOAFitter(toas, model)
    assert_allclose(f.fit_toas(), r.chi2)
    assert f.fit_toas() >= rn.chi2
コード例 #2
0
def wb():
    m = get_model(join(datadir, "NGC6440E.par"))
    t = make_fake_toas(55000, 58000, 20, model=m, freq=1400 * u.MHz, dm=10 * pint.dmu)

    wb = WidebandTOAFitter(t, m)
    wb.fit_toas()

    return wb
コード例 #3
0
def test_wideband_chi2_null_updating(wideband_fake):
    toas, model = wideband_fake
    model.free_params = ["F0"]
    f = WidebandTOAFitter(toas, model)
    assert abs(f.fit_toas() - WidebandTOAResiduals(toas, model).chi2) > 1
    c2 = WidebandTOAResiduals(toas, f.model).chi2
    assert_allclose(f.fit_toas(), c2)
    c2 = WidebandTOAResiduals(toas, f.model).chi2
    assert_allclose(f.fit_toas(), c2)
コード例 #4
0
 def test_noise_design_matrix_index(self):
     model = get_model("B1855+09_NANOGrav_12yv3.wb.gls.par")
     toas = get_TOAs("B1855+09_NANOGrav_12yv3.wb.tim",
                     ephem="DE436",
                     bipm_version="BIPM2015")
     fitter = WidebandTOAFitter(toas, model, additional_args={})
     fitter.fit_toas(full_cov=False, debug=True)
     # Test red noise basis
     pl_rd = fitter.model.pl_rn_basis_weight_pair(fitter.toas)[0]
     p0, p1 = fitter.resids.pl_red_noise_M_index
     pl_rd_backwards = (fitter.resids.pl_red_noise_M[0] *
                        fitter.resids.norm[p0:p1][np.newaxis, :])
     assert np.all(np.isclose(pl_rd, pl_rd_backwards[0:313, :]))
コード例 #5
0
ファイル: residuals.py プロジェクト: ben-cassese/PINT
    def calc_chi2(self, full_cov=False):
        """Return the weighted chi-squared for the model and toas.

        If the errors on the TOAs are independent this is a straightforward
        calculation, but if the noise model introduces correlated errors then
        obtaining a meaningful chi-squared value requires a Cholesky
        decomposition. This is carried out, here, by constructing a GLSFitter
        and asking it to do the chi-squared computation but not a fit.

        The return value here is available as self.chi2, which will not
        redo the computation unless necessary.

        The chi-squared value calculated here is suitable for use in downhill
        minimization algorithms and Bayesian approaches.

        Handling of problematic results - degenerate conditions explored by
        a minimizer for example - may need to be checked to confirm that they
        correctly return infinity.
        """
        # Use GLS but don't actually fit
        from pint.fitter import WidebandTOAFitter

        m = copy.deepcopy(self.model)
        m.free_params = []
        f = WidebandTOAFitter(
            self.toas, m, additional_args=dict(toa=dict(track_mode=self.toa.track_mode))
        )
        try:
            return f.fit_toas(maxiter=1, full_cov=full_cov)
        except LinAlgError as e:
            log.warning(
                "Degenerate conditions encountered when "
                "computing chi-squared: %s" % (e,)
            )
            return np.inf
コード例 #6
0
def test_wideband_chi2_updating(wideband_fake):
    toas, model = wideband_fake
    model.free_params = ["F0"]
    model.F0.value += 1e-6
    c2 = WidebandTOAResiduals(
        toas, model, toa_resid_args=dict(track_mode="use_pulse_numbers")
    ).chi2
    f2 = WidebandTOAFitter(
        toas, model, additional_args=dict(toa=dict(track_mode="use_pulse_numbers"))
    )
    ftc2 = f2.fit_toas()
    assert abs(ftc2 - c2) > 100
    assert_allclose(f2.model.F0.value, 1)
    assert 1e-3 > abs(WidebandTOAResiduals(toas, f2.model).chi2 - ftc2) > 1e-5
    ftc2 = f2.fit_toas(maxiter=10)
    assert_allclose(WidebandTOAResiduals(toas, f2.model).chi2, ftc2)
コード例 #7
0
    def test_fitting_no_full_cov(self):
        fitter = WidebandTOAFitter([self.toas], self.model, additional_args={})
        time_rms_pre = fitter.resids_init.toa.rms_weighted()
        dm_rms_pre = fitter.resids_init.dm.rms_weighted()
        fitter.fit_toas()
        dm_rms_post = fitter.resids.dm.rms_weighted()

        prefit_pint = fitter.resids_init.toa.time_resids
        prefit_tempo = self.tempo_res[:, 0] * u.us
        diff_prefit = (prefit_pint - prefit_tempo).to(u.ns)
        # 50 ns is the difference of PINT tempo precession and nautation model.
        assert np.abs(diff_prefit - diff_prefit.mean()).max() < 50 * u.ns
        postfit_pint = fitter.resids.toa.time_resids
        postfit_tempo = self.tempo_res[:, 1] * u.us
        diff_postfit = (postfit_pint - postfit_tempo).to(u.ns)
        assert np.abs(diff_postfit - diff_postfit.mean()).max() < 50 * u.ns
        assert np.abs(dm_rms_pre - dm_rms_post) < 3e-8 * dm_rms_pre.unit
コード例 #8
0
def test_wideband_fit_dmjump_all(wb_model, wb_toas_all):
    wb_model.free_params = ["DMJUMP1"]
    fitter = WidebandTOAFitter(wb_toas_all, wb_model)
    fitter.fit_toas()
    print(fitter.print_summary())
    assert_allclose(fitter.model.DMJUMP1.value, -10, atol=1e-3)
コード例 #9
0
def test_wideband_fit_dmjump(wb_model, wb_toas):
    wb_model.free_params = ["DMJUMP1"]
    fitter = WidebandTOAFitter(wb_toas, wb_model)
    fitter.fit_toas()
    assert_allclose(fitter.model.DMJUMP1.value, -10, atol=1e-3)
コード例 #10
0
# %%
toas.table[-1]

# %%
toas.table["flags"][0]

# %% [markdown]
# ## Do the fit
#
# As before, but now we need a fitter adapted to wideband TOAs.

# %%
fitter = WidebandTOAFitter(toas, model)

# %%
fitter.fit_toas()

# %% [markdown]
# ## What is new, compared to narrowband fitting?

# %% [markdown]
# ### Residual objects combine TOA and time data

# %%
type(fitter.resids)

# %% [markdown]
# #### If we look into the resids attribute, it has two independent Residual objects.

# %%
fitter.resids.toa, fitter.resids.dm
コード例 #11
0
 def test_fitting_full_cov(self):
     fitter = WidebandTOAFitter([self.toas,], self.model, additional_args={})
     rms_pre = fitter.resids_init.rms_weighted()
     fitter.fit_toas(full_cov=True)
     assert fitter.resids.rms_weighted() - rms_pre < 1e-9