コード例 #1
0
ファイル: _particle_layer.py プロジェクト: nollety/eradiate
    def eval_albedo_mono(self, w: pint.Quantity) -> pint.Quantity:
        with xr.open_dataset(self.dataset) as ds:
            wavelengths = w.m_as(ds.w.attrs["units"])
            interpolated_albedo = ds.albedo.interp(w=wavelengths)

        albedo = to_quantity(interpolated_albedo)
        albedo_array = albedo * np.ones(self.n_layers)
        return albedo_array
コード例 #2
0
    def eval_mono(self, w: pint.Quantity) -> pint.Quantity:
        w_units = ureg(self.data.ssi.w.attrs["units"])
        irradiance = to_quantity(
            self.data.ssi.interp(w=w.m_as(w_units), method="linear"))

        # Raise if out of bounds or ill-formed dataset
        if np.any(np.isnan(irradiance.magnitude)):
            raise ValueError("dataset interpolation returned nan")

        return irradiance * self.scale * self._scale_earth_sun_distance()
コード例 #3
0
    def integral(self, wmin: pint.Quantity,
                 wmax: pint.Quantity) -> pint.Quantity:
        # Collect spectral coordinates
        wavelength_units = self.wavelengths.units
        s_w = self.wavelengths.m
        s_wmin = s_w.min()
        s_wmax = s_w.max()

        # Select all spectral mesh vertices between wmin and wmax, as well as
        # the bounds themselves
        wmin = wmin.m_as(wavelength_units)
        wmax = wmax.m_as(wavelength_units)
        w = [
            wmin, *s_w[np.where(np.logical_and(wmin < s_w, s_w < wmax))[0]],
            wmax
        ]

        # Make explicit the fact that the function underlying this spectrum has
        # a finite support by padding the s_wmin and s_wmax values with a very
        # small margin
        eps = 1e-12  # nm

        try:
            w.insert(w.index(s_wmin), s_wmin - eps)
        except ValueError:
            pass

        try:
            w.insert(w.index(s_wmax) + 1, s_wmax + eps)
        except ValueError:
            pass

        # Evaluate spectrum at wavelengths
        w.sort()
        w = w * wavelength_units
        interp = self.eval_mono(w)

        # Compute integral
        return np.trapz(interp, w)
コード例 #4
0
def air_refractive_index(
    wavelength: pint.Quantity = ureg.Quantity(550.0, "nm"),
    number_density: pint.Quantity = _STANDARD_AIR_NUMBER_DENSITY,
) -> np.ndarray:
    """
    Computes the air refractive index.

    The wavelength dependence of the refractive index is computed using equation
    2 from :cite:`Peck1972DispersionAir`. This formula is a fit of
    measurements of the air refractive index in the range of wavelength from
    :math:`\\lambda = 240` nm to :math:`1690` nm.
    The number density dependence is computed using a simple proportionality
    rule.

    Parameters
    ----------
    wavelength : quantity
        Wavelength.

    number_density : quantity
        Number density.

        Default: Air number density at 101325 Pa and 288.15 K.

    Returns
    -------
    float or ndarray
        Air refractive index value(s).
    """

    # wavenumber in inverse micrometer
    sigma = 1 / wavelength.m_as("micrometer")
    sigma2 = np.square(sigma)

    # refractivity in parts per 1e8
    x = (5791817.0 / (238.0183 - sigma2)) + 167909.0 / (57.362 - sigma2)

    if isinstance(x, np.ndarray) and isinstance(number_density.magnitude, np.ndarray):
        x = x[:, np.newaxis]
        number_density = number_density[np.newaxis, :]

    # number density scaling
    x_scaled = x * (number_density / _STANDARD_AIR_NUMBER_DENSITY).m_as("dimensionless")

    # refractive index
    index = 1 + x_scaled * 1e-8

    return index
コード例 #5
0
def interpolate_radprops(radprops: xr.Dataset,
                         new_z_layer: pint.Quantity) -> xr.Dataset:
    """
    Interpolate a radiative property data set onto a new level altitude grid.

    Out of bounds values are replaced with zeros.

    Parameters
    ----------
    radprops : :class:`~xarray.Dataset`
        Radiative property data set.

    new_z_layer : :class:`~pint.Quantity`)
        Layer altitude grid to interpolate onto.

    Returns
    -------
    interpolated : Dataset
        Interpolated radiative property data set.
    """
    mask = (new_z_layer >= to_quantity(radprops.z_level).min()) & (
        new_z_layer <= to_quantity(radprops.z_level).max())
    masked = new_z_layer[
        mask]  # altitudes that fall within the bounds of radprops

    # interpolate within radprops altitude bounds (safe)
    with xr.set_options(keep_attrs=True):
        interpolated_safe = radprops.interp(
            z_layer=masked.m_as(radprops.z_layer.units),
            kwargs=dict(fill_value="extrapolate"
                        ),  # handle floating point arithmetic issue
            method=
            "nearest",  # radiative properties are assumed uniform in altitude layers
        )

    # interpolate over the full range
    with xr.set_options(keep_attrs=True):
        interpolated = interpolated_safe.interp(
            z_layer=new_z_layer.m_as(radprops.z_layer.units),
            kwargs=dict(fill_value=0.0),
            method="nearest",
        )

    return interpolated
コード例 #6
0
ファイル: _tabulated.py プロジェクト: nollety/eradiate
    def eval_mono(self, w: pint.Quantity) -> np.ndarray:
        """
        Evaluate phase function in monochromatic modes.

        Parameters
        ----------
        w : :class:`pint.Quantity`
            Wavelength values at which the phase function is to be evaluated.

        Returns
        -------
        ndarray
            Evaluated phase function as a 1D or 2D array depending on the shape
            of `w` (angle dimension comes last).
        """
        return (self.data.sel(i=0, j=0).interp(
            w=w.m_as(self.data.w.units),
            mu=np.linspace(-1, 1, self._n_mu),
            kwargs=dict(bounds_error=True),
        ).data)
コード例 #7
0
ファイル: _particle_layer.py プロジェクト: nollety/eradiate
    def eval_sigma_t_mono(self, w: pint.Quantity) -> pint.Quantity:
        with xr.open_dataset(self.dataset) as ds:
            ds_w_units = ureg(ds.w.attrs["units"])

            # find the extinction data variable
            for dv in ds.data_vars:
                standard_name = ds[dv].standard_name
                if "extinction" in standard_name:
                    extinction = ds[dv]

        wavelength = w.m_as(ds_w_units)
        xs_t = to_quantity(extinction.interp(w=wavelength))
        xs_t_550 = to_quantity(
            extinction.interp(w=ureg.convert(550.0, ureg.nm, ds_w_units)))
        fractions = self.eval_fractions()
        sigma_t_array = xs_t_550 * fractions
        dz = (self.top - self.bottom) / self.n_layers
        normalized_sigma_t_array = self._normalize_to_tau(
            ki=sigma_t_array.magnitude,
            dz=dz,
            tau=self.tau_550,
        )
        return normalized_sigma_t_array * xs_t / xs_t_550
コード例 #8
0
ファイル: absorption.py プロジェクト: nollety/eradiate
def compute_sigma_a(
    ds: xr.Dataset,
    wl: pint.Quantity = ureg.Quantity(550.0, "nm"),
    p: pint.Quantity = ureg.Quantity(101325.0, "Pa"),
    t: pint.Quantity = ureg.Quantity(288.15, "K"),
    n: t.Optional[pint.Quantity] = None,
    fill_values: t.Optional[float] = None,
    methods: t.Optional[t.Dict[str, str]] = None,
) -> pint.Quantity:
    """
    Compute monochromatic absorption coefficient at given wavelength,
    pressure and temperature values.

    Parameters
    ----------
    ds : Dataset
        Absorption cross section data set.

    wl : quantity
        Wavelength [nm].

    p : quantity
        Pressure [Pa].

        .. note:: If ``p``, ``t`` and ``n`` are arrays, their lengths must be
           the same.

    t : quantity
        Temperature [K].

        .. note:: If the coordinate ``t`` is not in the input dataset ``ds``,
           the interpolation on temperature is not performed.

    n : quantity
        Number density [m^-3].

        .. note:: If ``n`` is ``None``, the values of ``t`` and ``p`` are then
           used only to compute the corresponding number density.

    fill_values : dict, optional
        Mapping of coordinates (in ``["w", "pt"]``) and fill values (either
        ``None`` or float).
        If not ``None``, out of bounds values are assigned the fill value
        during interpolation along the wavelength or pressure and temperature
        coordinates.
        If ``None``, out of bounds values will trigger the raise of a
        ``ValueError``.
        Only one fill value can be provided for both pressure and temperature
        coordinates.

    methods : dict, optional
        Mapping of coordinates (in ``["w", "pt"]``) and interpolation methods.
        Default interpolation method is linear.
        Only one interpolation method can be specified for both pressure
        and temperature coordinates.

    Returns
    -------
    quantity
        Absorption coefficient values.

    Raises
    ------
    ValueError
        When wavelength, pressure, or temperature values are out of the range
        of the data set and the corresponding fill value in ``fill_values`` is
        ``None``.

    Warnings
    --------
    The values of the absorption cross section at the desired wavelength,
    pressure and temperature values,
    :math:`\\sigma_{a\\lambda} (p, T)`,
    are obtained by interpolating the input absorption cross section data
    set along the corresponding dimensions.

    Notes
    -----
    The absorption coefficient is given by:

    .. math::
        k_{a\\lambda} = n \\, \\sigma_{a\\lambda} (p, T)

    where

    * :math:`k_{a\\lambda}` is the absorption coefficient [:math:`L^{-1}`],
    * :math:`\\lambda` is the wavelength [:math:`L`],
    * :math:`n` is the number density [:math:`L^{-3}`],
    * :math:`\\sigma_a` is the absorption cross section [:math:`L^2`],
    * :math:`p` is the pressure [:math:`ML^{-1}T^{-2}`] and
    * :math:`t` is the temperature [:math:`\\Theta`].
    """

    if fill_values is None:
        fill_values = dict(w=None, pt=None)

    if methods is None:
        methods = dict(w="linear", pt="linear")

    for name in ["w", "pt"]:
        if name not in fill_values:
            fill_values[name] = None
        if name not in methods:
            methods[name] = "linear"

    # Interpolate along wavenumber dimension
    xsw = ds.interp(
        w=(1.0 / wl).m_as(ds.w.units),  # wavenumber in cm^-1
        method=methods["w"],
        kwargs=dict(
            bounds_error=(fill_values["w"] is None),
            fill_value=fill_values["w"],
        ),
    )

    # If the data set includes a temperature coordinate, we interpolate along
    # both pressure and temperature dimensions.
    # Else, we interpolate only along the pressure dimension.
    p_m = p.m_as(ds.p.units)
    p_values = np.array([p_m]) if isinstance(p_m, float) else p_m
    pz = xr.DataArray(p_values, dims="pt")
    if "t" in ds.coords:
        t_m = t.m_as(ds.t.units)
        t_values = np.array([t_m] *
                            len(p_values)) if isinstance(t_m, float) else t_m
        tz = xr.DataArray(t_values, dims="pt")
        interpolated = xsw.interp(
            p=pz,
            t=tz,
            method=methods["pt"],
            kwargs=dict(
                bounds_error=(fill_values["pt"] is None),
                fill_value=fill_values["pt"],
            ),
        )
    else:
        interpolated = xsw.interp(
            p=pz,
            method=methods["pt"],
            kwargs=dict(
                bounds_error=(fill_values["pt"] is None),
                fill_value=fill_values["pt"],
            ),
        )

    xs = to_quantity(interpolated.xs)

    n = p / (_BOLTZMANN * t) if n is None else n

    return (n * xs).to("km^-1")