def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations): for iteration in xrange(number_of_training_iterations): # Pass the training set through our neural network (a single neuron). output = self.think(training_set_inputs) # Calculate the error (The difference between the desired output # and the predicted output). error = training_set_outputs - output # Multiply the error by the input and again by the gradient of the Sigmoid curve. # This means less confident weights are adjusted more. # This means inputs, which are zero, do not cause changes to the weights. adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output)) # Adjust the weights. self.synaptic_weights += adjustment
def read_partitions(fp, header, lba_size=512): fp.seek(header.part_entry_start_lba * lba_size) fmt, GPTPartition = _make_fmt('GPTPartition', GPT_PARTITION_FORMAT, extras=['index']) for idx in xrange(1, 1 + header.num_part_entries): data = fp.read(header.part_entry_size) if len(data) < struct.calcsize(fmt): raise GPTError('Short partition entry') part = GPTPartition._make(struct.unpack(fmt, data) + (idx, )) if part.type == 16 * '\x00': continue part = part._replace( type=str(uuid.UUID(bytes_le=part.type)), unique=str(uuid.UUID(bytes_le=part.unique)), # do C-style string termination; otherwise you'll see a # long row of NILs for most names name=part.name.decode('utf-16').split('\0', 1)[0], ) yield part
def insertionSort(self, array, model): counter = 0 shift = 0 unsortedArray = array model.append(str("Изначальный массив:")) model.append(str(unsortedArray)) model.append(str("Сортировка:")) for i in xrange(1, len(array)): j = i - 1 value = array.pop(i) model.append(str(array)) shift += 1 while (j >= 0) and (array[j] > value): j -= 1 counter += 1 array.insert(j + 1, value) counter += 1 array.insert(len(array), counter) array.insert(len(array), shift) return array
def arePermutation(str1, str2): len_str1 = len(str1) len_str2 = len(str2) if len_str1 != len_str2: return 0 count1 = [0] * NO_CHARS count2 = [0] * NO_CHARS for i in str1: count1[ord( i )] += 1 # return an integer representing the Unicode code point of the character for i in str2: count2[ord(i)] += 1 for i in xrange(NO_CHARS): if count1[i] != count2[i]: return 0 return 1
def flatten(self, root): """ :type root: TreeNode :rtype: None Do not return anything, modify root in-place instead. """ nodes = [] def getNodes(node): if node: nodes.append(node) if node.left: getNodes(node.left) if node.right: getNodes(node.right) getNodes(root) for i in xrange(len(nodes) - 1): node = nodes[i] node.right = nodes[i + 1] node.left = None """
def middle_cod(geneList, genLength): onestr = ''.join(geneList) amount = (genLength - 6) / 3 codons = (onestr[n:n + 3] for n in xrange(3, len(onestr) - 3, 3)) # creates generator dict_codons = {} for i in codons: if dict_codons.get(i) is not None: dict_codons[i] += 1 else: dict_codons[i] = 1 # sum = 0 for i in dict_codons: dict_codons[i] /= amount dict_codons['TAA'] = dict_codons['TGA'] = dict_codons['TAG'] = 0 dict_codons[i] = round(dict_codons[i], 3) # sum += dict_codons[i] # print("total sum of frequency=: " + str(sumfre)) pd.reset_option('display.max_rows') df = pd.DataFrame(dict_codons.items(), columns=["codon", "frequency"]) return df
def delete_entry(entry_id): user = mongo.db.users.find_one({'username': session["user"]}) entry = mongo.db.entries.find_one({"_id": ObjectId(entry_id)}) # Deduct from Vacation days if Regular Vacation if entry['entry_type'] == "Regular Vacation": start_date_from_entry = datetime.strptime(entry["start_date"], '%d %b, %Y') end_date_from_entry = datetime.strptime(entry["end_date"], '%d %b, %Y') day_generator = (start_date_from_entry + timedelta(x + 1) for x in xrange( (end_date_from_entry - start_date_from_entry).days)) how_many_days_to_add = sum(1 for day in day_generator if day.weekday() < 5) + 1 update_user_days_before_new_deduction = user['vacation_days'] + how_many_days_to_add mongo.db.users.update_one({ "username": user['username']}, { "$set": { "vacation_days": update_user_days_before_new_deduction }}) # Next Lets delete the user entry mongo.db.entries.remove({"_id": ObjectId(entry_id)}) flash("Task Successfully Deleted!") return redirect(url_for("manage_entries"))
def parseData(log_file_path, export_file, regex, read_line=True): with open(log_file_path, "r") as file: match_list = [] if read_line == True: for line in file: for match in re.finditer(regex, line, re.S): match_text = match.group() match_list.append(match_text) print(match_text) else: data = file.read() for match in re.finditer(regex, data, re.S): match_text = match.group(); match_list.append(match_text) file.close() with open("output", "w+") as file: file.write("EXPORTED DATA:\n") match_list_clean = list(set(match_list)) for item in xrange(0, len(match_list_clean)): print(match_list_clean[item]) file.write(match_list_clean[item] + "\n") file.close()
def rev(): if len(i) == 0: return 0 else: if len(sc) > 0: if i[0] != sc[0]: r.append(i[0]) i.pop(0) else: while len(sc) > 0: for m in xrange(len(sc)): if i[int(m)] == sc[int(m)]: mp = True if mp: i.pop(0) sc.pop(0) else: i.pop(0) else: r.append(i[0]) i.pop(0) rev()
def frames_per_second(location): """ Calculate FPS Inout: Path of the Video Output: return list of fps(size 2). """ # video from path video = cv2.VideoCapture(location) # getting fps fps1 = video.get(cv2.CAP_PROP_FPS) # Number of frames to capture num_frames = 100 start = time.time() # Grab a few frames for i in xrange(0, num_frames): ret, frame = video.read() end = time.time() seconds = end - start # Time elapsed fps = num_frames / seconds # Calculate frames per second return [fps1, fps]
def markPlaceses(board, column, row): # check row & columns i = -1 while i > -n: board[row][i] = 1 board[i][column] = 1 i -= 1 # check row for i in xrange(n): board[row][i] = 1 i = 1 # check diagonal while 0 <= column + i <= n - 1 and 0 <= row + i <= n - 1: board[row + i][column + i] = 1 i += 1 i = 1 # check other diagonal while 0 <= column + i <= n - 1 and 0 <= row - i <= n - 1: board[row - i][column + i] = 1 i += 1
def print_hi(name): # Configure depth and color streams pipeline = rs.pipeline() colorizer = rs.colorizer() threshold_distance = 0.4 tr1 = rs.threshold_filter(min_dist=0.15, max_dist=threshold_distance) config = rs.config() # Get device product line for setting a supporting resolution pipeline_wrapper = rs.pipeline_wrapper(pipeline) pipeline_profile = config.resolve(pipeline_wrapper) device = pipeline_profile.get_device() device_product_line = str(device.get_info(rs.camera_info.product_line)) depth_sensor = pipeline_profile.get_device().first_depth_sensor() depth_scale = depth_sensor.get_depth_scale() config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) if device_product_line == 'L500': config.enable_stream(rs.stream.color, 960, 540, rs.format.bgr8, 30) else: config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) # Start streaming clipping_distance_in_meters = 0.9 clipping_distance = clipping_distance_in_meters / depth_scale align_to = rs.stream.color align = rs.align(align_to) pipeline.start(config) #thresholds for detect skins lower = np.array([0, 48, 80], dtype="uint8") upper = np.array([20, 255, 255], dtype="uint8") try: while True: frames = pipeline.wait_for_frames() # Align the depth frame to color frame aligned_frames = align.process(frames) # Get aligned frames aligned_depth_frame = aligned_frames.get_depth_frame( ) # aligned_depth_frame is a 640x480 depth image color_frame = aligned_frames.get_color_frame() # Validate that both frames are valid if not aligned_depth_frame or not color_frame: continue depth_image = np.asanyarray(aligned_depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) # Remove background - Set pixels further than clipping_distance to grey grey_color = 153 depth_image_3d = np.dstack( (depth_image, depth_image, depth_image)) # depth image is 1 channel, color is 3 channels bg_removed = np.where( (depth_image_3d > clipping_distance) | (depth_image_3d <= 0), grey_color, color_image) # Render images depth_colormap = cv2.applyColorMap( cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET) images = np.hstack((bg_removed, depth_colormap)) # cv2.namedWindow('Background Removed', cv2.WINDOW_AUTOSIZE) cv2.imshow('Color+depth', images) # images[270:, :] = [0, 0, 0] # images[0:240,:] = [0,0,0] # images[:, 0:50] = [0, 0, 0] # images[:, 630:] = [0, 0, 0] img_hsv = cv2.cvtColor(bg_removed, cv2.COLOR_BGR2HSV) ## Gen lower mask (0-5) and upper mask (175-180) of RED lower_red = np.array([94, 80, 2], dtype="uint8") upper_red = np.array([126, 255, 255], dtype="uint8") mask = cv2.inRange(img_hsv, lower_red, upper_red) bluepen = cv2.bitwise_and(bg_removed, bg_removed, mask=mask) cv2.imshow('BluePen', bluepen) bgModel = cv2.createBackgroundSubtractorMOG2(0, 50) fgmask = bgModel.apply(bluepen) kernel = np.ones((3, 3), np.uint8) fgmask = cv2.erode(fgmask, kernel, iterations=1) img = cv2.bitwise_and(bluepen, bluepen, mask=fgmask) # Skin detect and thresholding hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower = np.array([94, 80, 2], dtype="uint8") upper = np.array([126, 255, 255], dtype="uint8") skinMask = cv2.inRange(hsv, lower, upper) kernel = np.ones((3, 3), np.uint8) skinMask = cv2.erode(skinMask, kernel, iterations=2) skinMask = cv2.dilate(skinMask, kernel, iterations=1) cv2.imshow('Threshold Hands', skinMask) contours, hierarchy = cv2.findContours(skinMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) length = len(contours) maxArea = -1 drawing = np.zeros(img.shape, np.uint8) if length > 0: for i in xrange(length): temp = contours[i] area = cv2.contourArea(temp) if area > maxArea: maxArea = area ci = i res = contours[ci] hull = cv2.convexHull(res) # drawing = np.zeros(img.shape, np.uint8) cx, cy = centroid(res) print(aligned_depth_frame.get_distance(cx, cy)) cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2) else: drawing = np.zeros(img.shape, np.uint8) cv2.imshow('DRAWING', drawing) # bluepen_gray = cv2.cvtColor(bluepen, cv2.COLOR_BGR2HSV) # contours, hierarchy = cv2.findContours(bluepen_gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # length = len(contours) # drawing = np.zeros(bluepen_gray.shape, np.uint8) # maxArea = -1 # if length > 0: # for i in xrange(length): # temp = contours[i] # area = cv2.contourArea(temp) # if area > maxArea: # maxArea = area # ci = i # res1 = contours[ci] # # hull = cv2.convexHull(res1) # # cv2.drawContours(drawing, [res1], 0, (0, 255, 0), 2) # cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3) # cv2.imshow('',drawing) # length = len(contours) # print(length) # drawing = np.zeros(res.shape, np.uint8) # maxArea = -1 # if length > 0: # for i in xrange(length): # temp = contours[i] # area = cv2.contourArea(temp) # if area > maxArea: # maxArea = area # ci = i # res = contours[ci] # # hull = cv2.convexHull(res) # # # cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2) # cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3) # cv2.imshow('Only contour for calibration', drawing) # cv2.imshow('BluePen', res) # converted = cv2.cvtColor(images, cv2.COLOR_BGR2HSV) # skinMask = cv2.inRange(converted, lower, upper) # kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) # skinMask = cv2.erode(skinMask, kernel, iterations=2) # skinMask = cv2.dilate(skinMask, kernel, iterations=1) # # skinMask = cv2.GaussianBlur(skinMask, (5, 5), 0) # skin = cv2.bitwise_and(images, images, mask=skinMask) cv2.waitKey(1) # img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # ## Gen lower mask (0-5) and upper mask (175-180) of RED # mask1 = cv2.inRange(img_hsv, (0, 50, 20), (5, 255, 255)) # mask2 = cv2.inRange(img_hsv, (175, 50, 20), (180, 255, 255)) # # ## Merge the mask and crop the red regions # mask = cv2.bitwise_or(mask1, mask2) # croped = cv2.bitwise_and(img, img, mask=mask) finally: # Stop streaming pipeline.stop() # threshold_filter = rs.threshold_filter() # threshold_filter.set_option(rs.option.max_distance, 1) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
from pip._vendor.msgpack.fallback import xrange f = open('./dist/2.txt', 'r').readlines() stringsArr = [line.rstrip() for line in f] position = 0 string = [] for stringItemFirst in stringsArr: for j in range(1, len(stringsArr)): positions = [ i for i in xrange(len(stringsArr[j])) if stringsArr[j][i] != stringItemFirst[i] ] print(positions) if len(positions) == 1: position = positions.pop() string = stringItemFirst print(string[:position] + string[(position + 1):])
def double_click(self, pos=(-1, -1), button_name="left"): """Double click at the specifed placed""" for i in xrange(2): self.click(pos, button_name)
def result_plot(x,y,w_min): x1 = p.arange(0, 0.8, 0.01) y1 = [-(w_min[2] + w_min[0] * x1[k]) / w_min[1] for k in xrange(len(x1))] color = ['r'] * y.count(1.) + ['b'] * y.count(0.) plt.scatter(x[0], x[1], c=color) plt.plot(x1, y1)
def dfunc(x, y, w): # 一阶导数 df = p.zeros(len(x)) for i in xrange(len(x[0])): df += x[:, i] * (y[i] - p1(x[:, i], w)) return -df
def p1(x, w): # 后验概率估计 wx = 0 for i in xrange(len(x)): wx += w[i] * x[i] return p.exp(wx) / (1 + p.exp(wx))
def edit_entry(entry_id): if request.method == "POST": user = mongo.db.users.find_one({'username': session["user"]}) entry = mongo.db.entries.find_one({"_id": ObjectId(entry_id)}) username = user["username"] entry_username = entry["created_by"] if username != entry_username: flash("""This is not your entry. You can edit only your own! Please select only your entry!""") return redirect(url_for("calendar_home")) print("User: {} and Created By: {}".format(username, entry_username)) add_entry_department = request.form.get("category_name") user_department = user["department"] if user["department"] == "": mongo.db.users.update_one( {"username": user['username']}, {"$set": { "department": request.form["category_name"] }}) else: if add_entry_department != user_department: print( "Add entry department: {} is not the same as user department: {}" .format(add_entry_department, user_department)) flash("""Departments doesn't match. If you want to select different department, update your department in Profile""" ) return redirect(url_for("manage_entries")) # Deduct from Vacation days if Regular Vacation if entry['entry_type'] == "Regular Vacation": start_date_from_entry = datetime.strptime(entry["start_date"], '%d %b, %Y') end_date_from_entry = datetime.strptime(entry["end_date"], '%d %b, %Y') day_generator = (start_date_from_entry + timedelta(x + 1) for x in xrange((end_date_from_entry - start_date_from_entry).days)) how_many_days_to_add = sum( 1 for day in day_generator if day.weekday() < 5) + 1 update_user_days_before_new_deduction = user[ 'vacation_days'] + how_many_days_to_add mongo.db.users.update_one({"username": user['username']}, { "$set": { "vacation_days": update_user_days_before_new_deduction } }) user = mongo.db.users.find_one({'username': session["user"]}) # Next we deduct new amount of vacation days start_date = datetime.strptime(request.form.get("start_date"), '%d %b, %Y') end_date = datetime.strptime(request.form.get("end_date"), '%d %b, %Y') day_generator = (start_date + timedelta(x + 1) for x in xrange((end_date - start_date).days)) how_many_days = sum( 1 for day in day_generator if day.weekday() < 5) + 1 update_user_days = user['vacation_days'] - how_many_days mongo.db.users.update_one( {"username": user['username']}, {"$set": { "vacation_days": update_user_days }}) # Check if End Date is Before Start Date start_date = datetime.strptime(request.form.get("start_date"), '%d %b, %Y') end_date = datetime.strptime(request.form.get("end_date"), '%d %b, %Y') if end_date < start_date: flash("End Date is before start date. Please correct date entry") return redirect(url_for("manage_entries")) update = { "category_name": request.form.get("category_name"), "entry_type": request.form.get("entry_type"), "entry_description": request.form.get("entry_description"), "start_date": request.form.get("start_date"), "end_date": request.form.get("end_date"), "created_by": session["user"] } mongo.db.entries.update({"_id": ObjectId(entry_id)}, update) flash("Entry successfully Updated!") entry = mongo.db.entries.find_one({"_id": ObjectId(entry_id)}) categories = mongo.db.categories.find().sort("category_name", 1) vacation_types = mongo.db.vacation_types.find().sort("entry_type", 1) return render_template("edit_entry.html", categories=categories, vacation_types=vacation_types, entry=entry)
from __future__ import division, print_function, unicode_literals import math import numpy as np import matplotlib.pyplot as plt from pip._vendor.msgpack.fallback import xrange N = 100 d0 = 2 C = 3 X = np.zeros((d0, N * C)) y = np.zeros(N * C, dtype='uint8') for j in xrange(C): ix = range(N * j, N * (j + 1)) r = np.linspace(0.0, 1, N) t = np.linspace(j * 4, (j + 1) * 4, N) + np.random.randn(N) * 0.2 # theta X[:, ix] = np.c_[r * np.sin(t), r * np.cos(t)].T y[ix] = j #print(y[ix]) #print("==============") # lets visualize the data: # plt.scatter(X[:N, 0], X[:N, 1], c=y[:N], s=40, cmap=plt.cm.Spectral) plt.plot(X[0, :N], X[1, :N], 'bs', markersize=5) plt.plot(X[0, N:2 * N], X[1, N:2 * N], 'ro', markersize=5) plt.plot(X[0, 2 * N:], X[1, 2 * N:], 'g^', markersize=5) # plt.axis('off') plt.xlim([-1.5, 1.5])
while not questionmark: # Checks to see if there is a question mark question = input("Please ask a question:\n" ) # Allow the user to input their question. if "?" in question: questionmark = True else: print("This is not a question.") # Show an in progress message toolbar_width = 40 print("Magic 8 Balling in progress, do not disturb.") sys.stdout.write("[%s]" % (" " * toolbar_width)) # setup toolbar sys.stdout.flush() sys.stdout.write("\b" * (toolbar_width + 1)) # return to start of line, after '[' for i in xrange(toolbar_width): time.sleep(0.2) # Amount of pause between update # Updates the bar sys.stdout.write("-") sys.stdout.flush() sys.stdout.write("]\n") # This ends the progress bar print(choice(responses)) # Randomizes responses while not quitresponse: # Allow the user to ask another question/advice or quit the game quitinput = input( 'Would you like to ask the Magic 8 Ball again?\n [Yes] \n [No] \n') if str(quitinput.lower()) in ('yes', 'no'): if str(quitinput.lower()) in 'yes': quit = False quitresponse = True else:
from pip._vendor.msgpack.fallback import xrange n = int(input()) for i in xrange(n): print(i + 1, end="")
import sys from itertools import product from pip._vendor.msgpack.fallback import xrange width, height = 10, 5 coordinates = list(product(xrange(width), xrange(height))) coordinates[0] = "Godzilla" print(coordinates) #second counter = 0 for line in sys.stdin: counter += 1 ab = line.split() itemsCount = len(ab) finalExpression = [] nextCounter = 0 for index in range(len(ab)): if (index == nextCounter): item = ab[index] if item in ['+', '-', '*'] and index <= (itemsCount - 3): if ab[index + 1].isnumeric() and ab[index + 2].isnumeric() and int( ab[index + 1]) in range(-10, 10) and int( ab[index + 2]) in range(-10, 10): result = 0 if (item == '+'): result = int(ab[index + 1]) + int(ab[index + 2]) elif (item == '-'): result = int(ab[index + 1]) - int(ab[index + 2])
X = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) # output dataset y = np.array([[0, 0, 1, 1]]).T # seed random numbers to make calculation # deterministic (just a good practice) np.random.seed(1) # initialize weights randomly with mean 0 syn0 = 2 * np.random.random((3, 1)) - 1 for iter in xrange(10000): # forward propagation l0 = X l1 = nonlin(np.dot(l0, syn0)) # how much did we miss? l1_error = y - l1 # multiply how much we missed by the # slope of the sigmoid at the values in l1 l1_delta = l1_error * nonlin(l1, True) # update weights syn0 += np.dot(l0.T, l1_delta) sleep(0.001)
from PIL import Image from pytesseract import * img = cv2.imread('img/c1.jpg') #이미지 파일에서 영상을 읽어들인다. 각 픽셀정보 img = cv2.resize(img, (600, 420)) #img를 크기를 600*420으로 재조정 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #흑백처리 blur = cv2.GaussianBlur(gray, (3, 3), 0) #잡음제거 #threshold canny = cv2.Canny(blur, 75, 200) #윤곽추축 #컨투어 작업 contours, hierarchy = cv2.findContours(canny, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for i in xrange(len(contours)): cnt = contours[i] print(i) area = cv2.contourArea(cnt) #컨투어 영역의 넓이 rect = cv2.minAreaRect(cnt) #컨투어 영역을 포함한 최소의 사각형을 추출 box = cv2.boxPoints(rect) #위에서 추출한 사각형의 4개 좌표를 반환(좌표타입은 float) box = np.int0(box) #위에서 추출한 4좌표의 타입을 int로 변환 == int() h = box[0][1] - box[1][1] w = box[2][0] - box[1][0] if w == 0: continue if 1 / 6 <= h / w <= 1 / 4 and area >= 500: #번호판 추출 조건 img = cv2.drawContours(img, [box], 0, (0, 0, 255), 2) roi = img[box[1][1]:box[0][1], box[1][0]:box[2][0]] #조건에 맞는 컨투어 영역을 잘라서 roi에 저장
@author: Jacky ''' from collections import OrderedDict from time import time from random import randint from pip._vendor.distlib.compat import raw_input from pip._vendor.msgpack.fallback import xrange d = OrderedDict() d['Jacky']=(1,20) d['Tracy']=(1,22) d['Dora']=(2,20) for k in d: print(k) players = list('ABCDEFGH') d = OrderedDict() start = time() for i in xrange(8): raw_input() p = players.pop(randint(0,7-i)) end = time() print(i+1,p,end - start) d[p]=(i+1,end - start) print() print('='*20) for k in d: print(k,d[k])
def add_entry(): if request.method == "POST": user = mongo.db.users.find_one({'username': session["user"]}) start_date = datetime.strptime(request.form.get("start_date"), '%d %b, %Y') end_date = datetime.strptime(request.form.get("end_date"), '%d %b, %Y') if end_date < start_date: flash("End Date is before start date. Please correct date entry") return redirect(url_for("add_entry")) add_entry_department = request.form.get("category_name") user_department = user["department"] if user["department"] == "": mongo.db.users.update_one( {"username": user['username']}, {"$set": { "department": request.form["category_name"] }}) else: if add_entry_department != user_department: print( "Add entry department: {} is not the same as user department: {}" .format(add_entry_department, user_department)) flash("""Departments doesn't match. If you want to select different department, update your department in Profile""" ) return redirect(url_for("add_entry")) # Deduct from Vacation days if Regular Vacation entry_type = request.form.get("entry_type") if entry_type == "Regular Vacation": day_generator = (start_date + timedelta(x + 1) for x in xrange((end_date - start_date).days)) how_many_days = sum( 1 for day in day_generator if day.weekday() < 5) + 1 update_user_days = user['vacation_days'] - how_many_days if update_user_days <= 0: flash( "Current status of days left {}! You don't have enough days!" .format(user['vacation_days'])) return redirect(url_for("manage_entries")) else: mongo.db.users.update_one( {"username": user['username']}, {"$set": { "vacation_days": update_user_days }}) entry = { "category_name": request.form.get("category_name"), "entry_type": request.form.get("entry_type"), "entry_description": request.form.get("entry_description"), "start_date": request.form.get("start_date"), "end_date": request.form.get("end_date"), "created_by": session["user"] } mongo.db.entries.insert_one(entry) flash("Entry successfully added") categories = mongo.db.categories.find().sort("category_name", 1) vacation_types = mongo.db.vacation_types.find().sort("entry_type", 1) return render_template("add_entry.html", categories=categories, vacation_types=vacation_types)
if S['speedX']<10: R['accel']+= 1/(S['speedX']+.1) # Traction Control System if ((S['wheelSpinVel'][2]+S['wheelSpinVel'][3]) - (S['wheelSpinVel'][0]+S['wheelSpinVel'][1]) > 5): R['accel']-= .2 R['accel']= clip(R['accel'], 0 ,1) # Automatic Transmission R['gear']=1 if S['speedX']>50: R['gear']=2 if S['speedX']>80: R['gear']=3 if S['speedX']>110: R['gear']=4 if S['speedX']>140: R['gear']=5 if S['speedX']>170: R['gear']=6 return # ================ MAIN ================ if __name__ == "__main__": C= Client() for step in xrange(C.maxSteps, 0, -1): C.get_servers_input() drive_example(C) C.respond_to_server() C.shutdown()
def largeSum(num): listOf50 = [] for i in xrange(50, len(str(num))+1,50): listOf50.append(long(str(num)[i-50:i])) totalSum = reduce(lambda x , y : x + y, listOf50) return int(str(totalSum)[0:10])
# | to stop (exclusive) by step. range(i, j) produces i, i+1, i+2, ..., j-1. # | start defaults to 0, and stop is omitted! range(4) produces 0, 1, 2, 3. # | These are exactly the valid indices for a list of 4 elements. # | When step is given, it specifies the increment (or decrement). # print(help(range(10))) from pip._vendor.msgpack.fallback import xrange for item in range(0, 10, 2): print(item) #result 0 2 4 6 8 #the xrange() is quit similar to range() except that xrange() releases or frees the memory when not in use . #whereas range() doesn't release the memory . x = 0 for item in xrange(20): print("hello world !") for char in "this is a sentence !!! ": print(char) list = [char for char in "this is a sentence ! "] print(list) #indefinite Loop #try to get from user a valid integer # test = True while test: test = False
# Importamo modul random import random # Iz knjižnice pip._vendor.msgpack.fallback importamo xrange from pip._vendor.msgpack.fallback import xrange # Programu sporočimo naj izbere 10 števil od 1 do 100 array = random.sample(xrange(101),10) # Vpeljemo spremenljivko total in s funkcijo sum() seštejemo elemente "tabele" total = sum(array) # Izpišemo element print(array) # Izpišemo seštevek vsem elementov. print(total)