コード例 #1
0
 def get_local_baseline(idx):
     return LocalBaseline(name="local_baseline_{}".format(idx),
                          model_name="LogisticRegression",
                          model_opts={
                              "penalty": "l2",
                              "tol": 0.0001,
                              "C": 1.0,
                              "fit_intercept": True,
                              "solver": "lbfgs",
                              "max_iter": 50
                          })
コード例 #2
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, output_format="dense",
                                                                              label_type="int", label_name="y")
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0", intersect_method="rsa", sync_intersect_ids=True,
                                  only_output_key=False)
    hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="nesterov_momentum_sgd",
                           tol=0.0001, alpha=0.0001, max_iter=30, batch_size=-1,
                           early_stop="diff", learning_rate=0.15, init_param={"init_method": "zeros"})

    local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
                                     model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
                                                 "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr"})
    local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="multi", pos_label=1)
    evaluation_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_lr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(local_baseline_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_0.output.data, local_baseline_0.output.data]))

    pipeline.compile()

    pipeline.fit()

    # predict
    pipeline.deploy_component([data_transform_0, intersection_0, hetero_lr_0, local_baseline_0])

    predict_pipeline = PipeLine()
    predict_pipeline.add_component(reader_0)
    predict_pipeline.add_component(pipeline,
                                   data=Data(predict_input={pipeline.data_transform_0.input.data: reader_0.output.data}))
    predict_pipeline.add_component(evaluation_0, data=Data(data=[hetero_lr_0.output.data, local_baseline_0.output.data]))
    predict_pipeline.predict()
コード例 #3
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0", with_label=True, output_format="dense",
                      label_type="int", label_name="y")

    homo_lr_0 = HomoLR(name="homo_lr_0", penalty="L2", optimizer="sgd",
                       tol=0.0001, alpha=0.01, max_iter=30, batch_size=-1,
                       early_stop="weight_diff", learning_rate=0.15, init_param={"init_method": "zeros"})

    local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
                                     model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
                                                 "solver": "saga", "max_iter": 2})
    local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1)
    evaluation_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(homo_lr_0, data=Data(train_data=dataio_0.output.data))
    pipeline.add_component(local_baseline_0, data=Data(train_data=dataio_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=[homo_lr_0.output.data, local_baseline_0.output.data]))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
コード例 #4
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0", with_label=True)
    data_transform_1 = DataTransform(name="data_transform_1")

    federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="downsample",
                                         fractions=[[0, 1.0], [1, 1.0]], task_type="h**o")

    homo_binning_0 = HomoFeatureBinning(name='homo_binning_0', sample_bins=10, method="recursive_query")
    homo_binning_1 = HomoFeatureBinning(name='homo_binning_1')

    homo_onehot_0 = HomoOneHotEncoder(name='homo_onehot_0', need_alignment=True)
    homo_onehot_1 = HomoOneHotEncoder(name='homo_onehot_1')

    homo_lr_0 = HomoLR(name="homo_lr_0", penalty="L2", tol=0.0001, alpha=1.0,
                       optimizer="rmsprop", max_iter=5)
    homo_lr_1 = HomoLR(name="homo_lr_1")

    local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
                                     model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
                                                 "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr"})
    local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=True)
    local_baseline_1 = LocalBaseline(name="local_baseline_1")

    homo_secureboost_0 = HomoSecureBoost(name="homo_secureboost_0", num_trees=3)
    homo_secureboost_1 = HomoSecureBoost(name="homo_secureboost_1", num_trees=3)

    evaluation_0 = Evaluation(name="evaluation_0")
    evaluation_1 = Evaluation(name="evaluation_1")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)

    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data),
                           model=Model(model=data_transform_0.output.model))

    pipeline.add_component(federated_sample_0, data=Data(data=data_transform_0.output.data))

    pipeline.add_component(homo_binning_0, data=Data(data=federated_sample_0.output.data))
    pipeline.add_component(homo_binning_1, data=Data(data=data_transform_1.output.data),
                           model=Model(model=homo_binning_0.output.model))

    pipeline.add_component(homo_onehot_0, data=Data(data=homo_binning_0.output.data))
    pipeline.add_component(homo_onehot_1, data=Data(data=homo_binning_1.output.data),
                           model=Model(model=homo_onehot_0.output.model))

    pipeline.add_component(homo_lr_0, data=Data(data=homo_onehot_0.output.data))
    pipeline.add_component(homo_lr_1, data=Data(data=homo_onehot_1.output.data),
                           model=Model(model=homo_lr_0.output.model))

    pipeline.add_component(local_baseline_0, data=Data(data=homo_onehot_0.output.data))
    pipeline.add_component(local_baseline_1, data=Data(data=homo_onehot_1.output.data),
                           model=Model(model=local_baseline_0.output.model))

    pipeline.add_component(homo_secureboost_0, data=Data(data=homo_onehot_0.output.data))
    pipeline.add_component(homo_secureboost_1, data=Data(data=homo_onehot_1.output.data),
                           model=Model(model=homo_secureboost_0.output.model))

    pipeline.add_component(evaluation_0,
                           data=Data(
                               data=[homo_lr_0.output.data, homo_lr_1.output.data,
                                     local_baseline_0.output.data, local_baseline_1.output.data]))
    pipeline.add_component(evaluation_1,
                           data=Data(
                               data=[homo_secureboost_0.output.data, homo_secureboost_1.output.data]))

    pipeline.compile()

    pipeline.fit()

    print(pipeline.get_component("evaluation_0").get_summary())
    print(pipeline.get_component("evaluation_1").get_summary())
コード例 #5
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_1.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_2 = Reader(name="reader_2")
    reader_2.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_2.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      missing_fill=True,
                                                      outlier_replace=True)
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False,
                                                    missing_fill=True,
                                                    outlier_replace=True)
    data_transform_1 = DataTransform(name="data_transform_1")
    data_transform_2 = DataTransform(name="data_transform_2")

    intersection_0 = Intersection(name="intersection_0")
    intersection_1 = Intersection(name="intersection_1")
    intersection_2 = Intersection(name="intersection_2")

    union_0 = Union(name="union_0")

    federated_sample_0 = FederatedSample(name="federated_sample_0",
                                         mode="stratified",
                                         method="downsample",
                                         fractions=[[0, 1.0], [1, 1.0]])

    feature_scale_0 = FeatureScale(name="feature_scale_0")
    feature_scale_1 = FeatureScale(name="feature_scale_1")

    hetero_feature_binning_0 = HeteroFeatureBinning(
        name="hetero_feature_binning_0")
    hetero_feature_binning_1 = HeteroFeatureBinning(
        name="hetero_feature_binning_1")

    hetero_feature_selection_0 = HeteroFeatureSelection(
        name="hetero_feature_selection_0")
    hetero_feature_selection_1 = HeteroFeatureSelection(
        name="hetero_feature_selection_1")

    one_hot_0 = OneHotEncoder(name="one_hot_0")
    one_hot_1 = OneHotEncoder(name="one_hot_1")

    hetero_lr_0 = HeteroLR(name="hetero_lr_0",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15)
    hetero_lr_1 = HeteroLR(name="hetero_lr_1")
    hetero_lr_2 = HeteroLR(name="hetero_lr_2",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15,
                           cv_param={
                               "n_splits": 5,
                               "shuffle": True,
                               "random_seed": 103,
                               "need_cv": True
                           })

    hetero_sshe_lr_0 = HeteroSSHELR(
        name="hetero_sshe_lr_0",
        reveal_every_iter=True,
        reveal_strategy="respectively",
        penalty="L2",
        optimizer="rmsprop",
        tol=1e-5,
        batch_size=320,
        learning_rate=0.15,
        init_param={"init_method": "random_uniform"},
        alpha=0.01,
        max_iter=3)
    hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1")

    local_baseline_0 = LocalBaseline(name="local_baseline_0",
                                     model_name="LogisticRegression",
                                     model_opts={
                                         "penalty": "l2",
                                         "tol": 0.0001,
                                         "C": 1.0,
                                         "fit_intercept": True,
                                         "solver": "lbfgs",
                                         "max_iter": 5,
                                         "multi_class": "ovr"
                                     })
    local_baseline_0.get_party_instance(
        role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)
    local_baseline_1 = LocalBaseline(name="local_baseline_1")

    hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0",
                                             num_trees=3)
    hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1")
    hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2",
                                             num_trees=3,
                                             cv_param={
                                                 "shuffle": False,
                                                 "need_cv": True
                                             })

    hetero_linr_0 = HeteroLinR(name="hetero_linr_0",
                               penalty="L2",
                               optimizer="sgd",
                               tol=0.001,
                               alpha=0.01,
                               max_iter=3,
                               early_stop="weight_diff",
                               batch_size=-1,
                               learning_rate=0.15,
                               decay=0.0,
                               decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               floating_point_precision=23)
    hetero_linr_1 = HeteroLinR(name="hetero_linr_1")

    hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0",
                                        max_iter=5,
                                        early_stop="weight_diff",
                                        batch_size=-1)
    hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1")

    hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0",
                                     early_stop="weight_diff",
                                     max_iter=10,
                                     alpha=100.0,
                                     batch_size=-1,
                                     learning_rate=0.01,
                                     optimizer="rmsprop",
                                     exposure_colname="exposure",
                                     decay_sqrt=False,
                                     tol=0.001,
                                     init_param={"init_method": "zeros"},
                                     penalty="L2")
    hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1")

    hetero_sshe_poisson_0 = HeteroSSHEPoisson(name="hetero_sshe_poisson_0",
                                              max_iter=5)
    hetero_sshe_poisson_1 = HeteroSSHEPoisson(name="hetero_sshe_poisson_1")

    evaluation_0 = Evaluation(name="evaluation_0")
    evaluation_1 = Evaluation(name="evaluation_1")
    evaluation_2 = Evaluation(name="evaluation_2")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(reader_2)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(model=data_transform_0.output.model))
    pipeline.add_component(data_transform_2,
                           data=Data(data=reader_2.output.data),
                           model=Model(model=data_transform_0.output.model))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(intersection_1,
                           data=Data(data=data_transform_1.output.data))
    pipeline.add_component(intersection_2,
                           data=Data(data=data_transform_2.output.data))

    pipeline.add_component(
        union_0,
        data=Data(
            data=[intersection_0.output.data, intersection_2.output.data]))

    pipeline.add_component(federated_sample_0,
                           data=Data(data=intersection_1.output.data))

    pipeline.add_component(feature_scale_0,
                           data=Data(data=union_0.output.data))
    pipeline.add_component(feature_scale_1,
                           data=Data(data=federated_sample_0.output.data),
                           model=Model(model=feature_scale_0.output.model))

    pipeline.add_component(hetero_feature_binning_0,
                           data=Data(data=feature_scale_0.output.data))
    pipeline.add_component(
        hetero_feature_binning_1,
        data=Data(data=feature_scale_1.output.data),
        model=Model(model=hetero_feature_binning_0.output.model))

    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=hetero_feature_binning_0.output.data))
    pipeline.add_component(
        hetero_feature_selection_1,
        data=Data(data=hetero_feature_binning_1.output.data),
        model=Model(model=hetero_feature_selection_0.output.model))

    pipeline.add_component(
        one_hot_0, data=Data(data=hetero_feature_selection_0.output.data))
    pipeline.add_component(
        one_hot_1,
        data=Data(data=hetero_feature_selection_1.output.data),
        model=Model(model=one_hot_0.output.model))

    pipeline.add_component(hetero_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_lr_0.output.model))
    pipeline.add_component(hetero_lr_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(local_baseline_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(local_baseline_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=local_baseline_0.output.model))

    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_lr_0.output.model))

    pipeline.add_component(hetero_secureboost_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_secureboost_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_secureboost_0.output.model))
    pipeline.add_component(hetero_secureboost_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_linr_0.output.model))

    pipeline.add_component(hetero_sshe_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_linr_0.output.model))

    pipeline.add_component(hetero_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_poisson_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_poisson_0.output.model))

    pipeline.add_component(
        evaluation_0,
        data=Data(data=[
            hetero_lr_0.output.data, hetero_lr_1.output.data,
            hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data,
            local_baseline_0.output.data, local_baseline_1.output.data
        ]))

    pipeline.add_component(hetero_sshe_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_sshe_poisson_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_sshe_poisson_0.output.model))

    pipeline.add_component(
        evaluation_1,
        data=Data(data=[
            hetero_linr_0.output.data, hetero_linr_1.output.data,
            hetero_sshe_linr_0.output.data, hetero_linr_1.output.data
        ]))
    pipeline.add_component(
        evaluation_2,
        data=Data(data=[
            hetero_poisson_0.output.data, hetero_poisson_1.output.data,
            hetero_sshe_poisson_0.output.data,
            hetero_sshe_poisson_1.output.data
        ]))

    pipeline.compile()

    pipeline.fit()

    print(pipeline.get_component("evaluation_0").get_summary())
    print(pipeline.get_component("evaluation_1").get_summary())
    print(pipeline.get_component("evaluation_2").get_summary())