def run_e2e_private_partition_selection_large_budget(col, backend): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.LAPLACE, metrics=[agg.Metrics.COUNT, agg.Metrics.SUM], min_value=1, max_value=10, max_partitions_contributed=1, max_contributions_per_partition=1) # Set a large budget for having the small noise and keeping all # partition keys. budget_accountant = NaiveBudgetAccountant(total_epsilon=100000, total_delta=1) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: f"pk{x//2}", value_extractor=lambda x: x) engine = pipeline_dp.DPEngine(budget_accountant, backend) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) budget_accountant.compute_budgets() return col
def test_with_noise(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=10, total_delta=1e-5) budget = budget_accountant.request_budget( pipeline_dp.MechanismType.GAUSSIAN) budget_accountant.compute_budgets() params = pipeline_dp.AggregateParams( min_value=0, max_value=1, max_partitions_contributed=1, max_contributions_per_partition=1, noise_kind=NoiseKind.GAUSSIAN, metrics=[pipeline_dp.Metrics.COUNT]) count_accumulator = accumulator.CountAccumulator( accumulator.CountParams(budget, params), list(range(5))) self.assertAlmostEqual(first=count_accumulator.compute_metrics(), second=5, delta=4) count_accumulator.add_value(50) self.assertAlmostEqual(first=count_accumulator.compute_metrics(), second=6, delta=4) count_accumulator.add_value(list(range(49))) self.assertAlmostEqual(first=count_accumulator.compute_metrics(), second=7, delta=4) count_accumulator.add_value('*' * 100) self.assertAlmostEqual(first=count_accumulator.compute_metrics(), second=8, delta=4)
def test_without_noise(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1000000, total_delta=0.9999999) budget = budget_accountant.request_budget( pipeline_dp.MechanismType.GAUSSIAN) budget_accountant.compute_budgets() no_noise = pipeline_dp.AggregateParams( min_value=0, max_value=1, max_partitions_contributed=1, max_contributions_per_partition=1, noise_kind=NoiseKind.GAUSSIAN, metrics=[pipeline_dp.Metrics.COUNT]) count_accumulator = accumulator.CountAccumulator( accumulator.CountParams(budget, no_noise), list(range(5))) self.assertEqual(count_accumulator.compute_metrics(), 5) count_accumulator = accumulator.CountAccumulator( accumulator.CountParams(budget, no_noise), 'a' * 50) self.assertEqual(count_accumulator.compute_metrics(), 50) count_accumulator = accumulator.CountAccumulator( accumulator.CountParams(budget, no_noise), list(range(50))) count_accumulator.add_value(49) self.assertEqual(count_accumulator.compute_metrics(), 51) count_accumulator_1 = accumulator.CountAccumulator( accumulator.CountParams(budget, no_noise), list(range(50))) count_accumulator_2 = accumulator.CountAccumulator( accumulator.CountParams(budget, no_noise), 'a' * 50) count_accumulator_1.add_accumulator(count_accumulator_2) self.assertEqual(count_accumulator_1.compute_metrics(), 100)
def test_annotate_call(self, mock_annotate_fn): # Arrange total_epsilon, total_delta = 3, 0.0001 budget_accountant = NaiveBudgetAccountant(total_epsilon, total_delta, num_aggregations=3) dp_engine = self._create_dp_engine_default(budget_accountant) aggregate_params, public_partitions = self._create_params_default() select_partition_params = SelectPartitionsParams(2) extractors = self._get_default_extractors() input = [1, 2, 3] # Act and assert dp_engine.select_partitions(input, select_partition_params, extractors) dp_engine.aggregate(input, aggregate_params, extractors, public_partitions) dp_engine.aggregate(input, aggregate_params, extractors, public_partitions) budget_accountant.compute_budgets() # Assert self.assertEqual(3, mock_annotate_fn.call_count) for i_call in range(3): budget = mock_annotate_fn.call_args_list[i_call][1]['budget'] self.assertEqual(total_epsilon / 3, budget.epsilon) self.assertEqual(total_delta / 3, budget.delta)
def test_aggregate_report(self): col = [[1], [2], [3], [3]] data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: f"pid{x}", partition_extractor=lambda x: f"pk{x}", value_extractor=lambda x: x) params1 = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, max_partitions_contributed=3, max_contributions_per_partition=2, min_value=1, max_value=5, metrics=[ pipeline_dp.Metrics.PRIVACY_ID_COUNT, pipeline_dp.Metrics.COUNT, pipeline_dp.Metrics.MEAN ], ) params2 = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, max_partitions_contributed=1, max_contributions_per_partition=3, min_value=2, max_value=10, metrics=[pipeline_dp.Metrics.SUM, pipeline_dp.Metrics.MEAN], public_partitions=list(range(1, 40)), ) select_partitions_params = SelectPartitionsParams( max_partitions_contributed=2) budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) engine.aggregate(col, params1, data_extractor) engine.aggregate(col, params2, data_extractor) engine.select_partitions(col, select_partitions_params, data_extractor) self.assertEqual(3, len(engine._report_generators)) # pylint: disable=protected-access budget_accountant.compute_budgets() self.assertEqual( engine._report_generators[0].report(), "Differentially private: Computing <Metrics: ['privacy_id_count', 'count', 'mean']>" "\n1. Per-partition contribution bounding: randomly selected not more than 2 contributions" "\n2. Cross-partition contribution bounding: randomly selected not more than 3 partitions per user" "\n3. Private Partition selection: using Truncated Geometric method with (eps= 0.1111111111111111, delta = 1.1111111111111111e-11)" ) self.assertEqual( engine._report_generators[1].report(), "Differentially private: Computing <Metrics: ['sum', 'mean']>" "\n1. Public partition selection: dropped non public partitions" "\n2. Per-partition contribution bounding: randomly selected not more than 3 contributions" "\n3. Cross-partition contribution bounding: randomly selected not more than 1 partitions per user" "\n4. Adding empty partitions to public partitions that are missing in data" ) self.assertEqual( engine._report_generators[2].report(), "Differentially private: Computing <Private Partitions>" "\n1. Private Partition selection: using Truncated Geometric method with (eps= 0.3333333333333333, delta = 3.3333333333333335e-11)" )
def test_request_budget(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=0) budget = budget_accountant.request_budget(noise_kind=NoiseKind.LAPLACE) self.assertTrue(budget) # An object must be returned. with self.assertRaises(AssertionError): print(budget.eps) # The privacy budget is not calculated yet. with self.assertRaises(AssertionError): print(budget.delta) # The privacy budget is not calculated yet.
def test_validation(self): NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) # No exception. NaiveBudgetAccountant(total_epsilon=1, total_delta=0) # No exception. with self.assertRaises(ValueError): NaiveBudgetAccountant( total_epsilon=0, total_delta=1e-10) # Epsilon must be positive. with self.assertRaises(ValueError): NaiveBudgetAccountant( total_epsilon=0.5, total_delta=-1e-10) # Delta must be non-negative.
def test_num_aggregations(self, num_aggregations): total_epsilon, total_delta = 1, 1e-6 budget_accountant = NaiveBudgetAccountant( total_epsilon=total_epsilon, total_delta=total_delta, num_aggregations=num_aggregations) for _ in range(num_aggregations): budget = budget_accountant._compute_budget_for_aggregation(1) expected_epsilon = total_epsilon / num_aggregations expected_delta = total_delta / num_aggregations self.assertAlmostEqual(expected_epsilon, budget.epsilon) self.assertAlmostEqual(expected_delta, budget.delta) budget_accountant.compute_budgets()
def test_select_partitions(self): # This test is probabilistic, but the parameters were chosen to ensure # the test has passed at least 10000 runs. # Arrange params = SelectPartitionsParams(max_partitions_contributed=1) budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-5) # Generate dataset as a list of (user, partition_key) tuples. # There partitions are generated to reflect several scenarios. # A partition with sufficient amount of users. col = [(u, "pk-many-contribs") for u in range(25)] # A partition with many contributions, but only a few unique users. col += [(100 + u // 10, "pk-many-contribs-few-users") for u in range(30)] # A partition with few contributions. col += [(200 + u, "pk-few-contribs") for u in range(3)] # Generating 30 partitions, each with the same group of 25 users # 25 users is sufficient to keep the partition, but because of # contribution bounding, much less users per partition will be kept. for i in range(30): col += [(500 + u, f"few-contribs-after-bound{i}") for u in range(25)] col = list(col) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x[0], partition_extractor=lambda x: x[1]) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.select_partitions(col=col, params=params, data_extractors=data_extractor) budget_accountant.compute_budgets() col = list(col) # Assert # Only one partition is retained, the one that has many unique _after_ # applying the "max_partitions_contributed" bound is retained. self.assertEqual(["pk-many-contribs"], col)
def test_aggregation_weights(self): total_epsilon, total_delta = 1, 1e-6 weights = [1, 2, 5] budget_accountant = NaiveBudgetAccountant(total_epsilon=total_epsilon, total_delta=total_delta, aggregation_weights=weights) for weight in weights: budget = budget_accountant._compute_budget_for_aggregation(weight) expected_epsilon = total_epsilon * weight / sum(weights) expected_delta = total_delta * weight / sum(weights) self.assertAlmostEqual(expected_epsilon, budget.epsilon) self.assertAlmostEqual(expected_delta, budget.delta) budget_accountant.compute_budgets()
def test_two_calls_compute_budgets_raise_exception(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) budget_accountant.request_budget(mechanism_type=MechanismType.LAPLACE) budget_accountant.compute_budgets() with self.assertRaises(Exception): # Budget can be computed only once. budget_accountant.compute_budgets()
def test_accumulator_factory_multiple_types( self, mock_create_accumulator_factories): aggregate_params = pipeline_dp.AggregateParams( noise_kind=NoiseKind.GAUSSIAN, metrics=[agg.Metrics.MEAN], max_partitions_contributed=5, max_contributions_per_partition=3, min_value=0, max_value=1) budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=0.01) values = [10] mock_create_accumulator_factories.return_value = [ MeanAccumulatorFactory(), SumOfSquaresAccumulatorFactory() ] accumulator_factory = accumulator.CompoundAccumulatorFactory( aggregate_params, budget_accountant) created_accumulator = accumulator_factory.create(values) self.assertTrue( isinstance(created_accumulator, accumulator.CompoundAccumulator)) self.assertEqual(created_accumulator.compute_metrics(), [10, 100]) mock_create_accumulator_factories.assert_called_with( aggregate_params, budget_accountant)
def test_check_invalid_bounding_params(self, error_msg, min_value, max_value, max_partitions_contributed, max_contributions_per_partition, metrics): with self.assertRaises(Exception, msg=error_msg): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) engine.aggregate( [0], pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, max_partitions_contributed=max_partitions_contributed, max_contributions_per_partition= max_contributions_per_partition, min_value=min_value, max_value=max_value, metrics=metrics), pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: x, value_extractor=lambda x: x, ))
def test_aggregate_computation_graph_verification( self, mock_bound_contributions): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, metrics=[agg.Metrics.COUNT], max_partitions_contributed=5, max_contributions_per_partition=3) budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) col = [[1], [2], [3], [3]] data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: f"pid{x}", partition_extractor=lambda x: f"pk{x}", value_extractor=lambda x: x) mock_bound_contributions.return_value = [ [("pid1", "pk1"), (1, [1])], [("pid2", "pk2"), (1, [1])], [("pid3", "pk3"), (1, [2])], ] engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) # Assert mock_bound_contributions.assert_called_with( unittest.mock.ANY, aggregator_params.max_partitions_contributed, aggregator_params.max_contributions_per_partition, unittest.mock.ANY)
def test_request_after_compute_raise_exception(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) budget_accountant.request_budget(mechanism_type=MechanismType.LAPLACE) budget_accountant.compute_budgets() with self.assertRaises(Exception): # Budget can not be requested after it has been already computed. budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE)
def test_aggregate_public_partitions_add_empty_public_partitions(self): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, metrics=[ agg.Metrics.COUNT, agg.Metrics.SUM, agg.Metrics.PRIVACY_ID_COUNT ], min_value=0, max_value=1, max_partitions_contributed=1, max_contributions_per_partition=1, public_partitions=["pk0", "pk10", "pk11"]) # Set a high budget to add close to 0 noise. budget_accountant = NaiveBudgetAccountant(total_epsilon=100000, total_delta=1 - 1e-10) # Input collection has 10 elements, such that each privacy id # contributes 1 time and each partition has 1 element. col = list(range(10)) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: f"pk{x}", value_extractor=lambda x: 1) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) budget_accountant.compute_budgets() col = list(col) partition_keys = [x[0] for x in col] # Assert # Only public partitions ("pk0") should be kept and empty public # partitions ("pk10", "pk11") should be added. self.assertEqual(["pk0", "pk10", "pk11"], partition_keys) self.assertAlmostEqual(1, col[0][1][0]) # "pk0" COUNT ≈ 1 self.assertAlmostEqual(1, col[0][1][1]) # "pk0" SUM ≈ 1 self.assertAlmostEqual(1, col[0][1][2]) # "pk0" PRIVACY_ID_COUNT ≈ 1 self.assertAlmostEqual(0, col[1][1][0]) # "pk10" COUNT ≈ 0 self.assertAlmostEqual(0, col[1][1][1]) # "pk10" SUM ≈ 0 self.assertAlmostEqual(0, col[1][1][2]) # "pk10" PRIVACY_ID_COUNT ≈ 0
def test_aggregate_public_partitions_drop_non_public(self): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, metrics=[ agg.Metrics.COUNT, agg.Metrics.SUM, agg.Metrics.PRIVACY_ID_COUNT ], min_value=0, max_value=1, max_partitions_contributed=1, max_contributions_per_partition=1, public_partitions=["pk0", "pk1", "pk10"]) # Set an arbitrary budget, we are not interested in the DP outputs, only # the partition keys. budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) # Input collection has 10 elements, such that each privacy id # contributes 1 time and each partition has 1 element. col = list(range(10)) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: f"pk{x}", value_extractor=lambda x: x) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) budget_accountant.compute_budgets() col = list(col) partition_keys = [x[0] for x in col] # Assert # Only public partitions (0, 1, 2) should be kept and the rest of the # partitions should be dropped. self.assertEqual(["pk0", "pk1", "pk10"], partition_keys)
def test_check_aggregate_params(self): default_extractors = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: x, value_extractor=lambda x: x, ) default_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, max_partitions_contributed=1, max_contributions_per_partition=1, metrics=[pipeline_dp.Metrics.PRIVACY_ID_COUNT]) test_cases = [ { "desc": "None col", "col": None, "params": default_params, "data_extractor": default_extractors, }, { "desc": "empty col", "col": [], "params": default_params, "data_extractor": default_extractors }, { "desc": "none params", "col": [0], "params": None, "data_extractor": default_extractors, }, { "desc": "None data_extractor", "col": [0], "params": default_params, "data_extractor": None, }, { "desc": "data_extractor with an incorrect type", "col": [0], "params": default_params, "data_extractor": 1, }, ] for test_case in test_cases: with self.assertRaises(Exception, msg=test_case["desc"]): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) engine = pipeline_dp.DPEngine( budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) engine.aggregate(test_case["col"], test_case["params"], test_case["data_extractor"])
def test_budget_scopes(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) with budget_accountant.scope(weight=0.4): budget1 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE) budget2 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE, weight=3) with budget_accountant.scope(weight=0.6): budget3 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE) budget4 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE, weight=4) budget_accountant.compute_budgets() self.assertEqual(budget1.eps, 0.4 * (1 / 4)) self.assertEqual(budget2.eps, 0.4 * (3 / 4)) self.assertEqual(budget3.eps, 0.6 * (1 / 5)) self.assertEqual(budget4.eps, 0.6 * (4 / 5))
def test_create_accumulator_factories_with_count_params(self): acc_factories = accumulator._create_accumulator_factories( aggregation_params=pipeline_dp.AggregateParams( noise_kind=NoiseKind.GAUSSIAN, metrics=[pipeline_dp.Metrics.COUNT], max_partitions_contributed=1, max_contributions_per_partition=1, budget_weight=1), budget_accountant=NaiveBudgetAccountant(total_epsilon=1, total_delta=0.01)) self.assertEqual(len(acc_factories), 1) self.assertIsInstance(acc_factories[0], accumulator.CountAccumulatorFactory)
def test_aggregate_private_partition_selection_drop_many(self): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, metrics=[agg.Metrics.COUNT], max_partitions_contributed=1, max_contributions_per_partition=1) # Set a small budget for dropping most partition keys. budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) # Input collection has 100 elements, such that each privacy id # contributes 1 time and each partition has 1 element. col = list(range(100)) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: f"pk{x}", value_extractor=lambda x: None) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) budget_accountant.compute_budgets() col = list(col) # Assert # Most partition should be dropped by private partition selection. # This tests is non-deterministic, but it should pass with probability # very close to 1. self.assertLess(len(col), 5)
def test_aggregate_private_partition_selection_keep_everything(self): # Arrange aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.GAUSSIAN, metrics=[agg.Metrics.COUNT], max_partitions_contributed=1, max_contributions_per_partition=1) # Set a large budget for having the small noise and keeping all # partition keys. budget_accountant = NaiveBudgetAccountant(total_epsilon=100000, total_delta=1e-10) col = list(range(10)) + list(range(100, 120)) data_extractor = pipeline_dp.DataExtractors( privacy_id_extractor=lambda x: x, partition_extractor=lambda x: f"pk{x//100}", value_extractor=lambda x: None) engine = pipeline_dp.DPEngine(budget_accountant=budget_accountant, backend=pipeline_dp.LocalBackend()) col = engine.aggregate(col=col, params=aggregator_params, data_extractors=data_extractor) budget_accountant.compute_budgets() col = list(col) # Assert approximate_expected = {"pk0": 10, "pk1": 20} self.assertEqual(2, len(col)) # all partition keys are kept. for pk, metrics_tuple in col: dp_count = metrics_tuple.count self.assertAlmostEqual(approximate_expected[pk], dp_count, delta=1e-3)
def test_create_accumulator_params_with_count_params(self): acc_params = accumulator.create_accumulator_params( aggregation_params=pipeline_dp.AggregateParams( metrics=[pipeline_dp.Metrics.COUNT], max_partitions_contributed=4, max_contributions_per_partition=5, budget_weight=1), budget_accountant=NaiveBudgetAccountant(total_epsilon=1, total_delta=0.01)) self.assertEqual(len(acc_params), 1) self.assertEqual(acc_params[0].accumulator_type, accumulator.CountAccumulator) self.assertTrue( isinstance(acc_params[0].constructor_params, accumulator.CountParams))
def test_contribution_bounding_empty_col(self): input_col = [] max_partitions_contributed = 2 max_contributions_per_partition = 2 dp_engine = pipeline_dp.DPEngine( NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10), pipeline_dp.LocalPipelineOperations()) bound_result = list( dp_engine._bound_contributions( input_col, max_partitions_contributed=max_partitions_contributed, max_contributions_per_partition=max_contributions_per_partition, aggregator_fn=dp_engineTest.aggregator_fn)) self.assertFalse(bound_result)
def create_dp_engine_default(accountant: NaiveBudgetAccountant = None, backend: PipelineBackend = None): if not accountant: accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10) if not backend: backend = pipeline_dp.LocalBackend() dp_engine = pipeline_dp.DPEngine(accountant, backend) aggregator_params = pipeline_dp.AggregateParams( noise_kind=pipeline_dp.NoiseKind.LAPLACE, metrics=[], max_partitions_contributed=1, max_contributions_per_partition=1) dp_engine._report_generators.append(ReportGenerator(aggregator_params)) dp_engine._add_report_stage("DP Engine Test") return dp_engine
def test_select_private_partitions(self): input_col = [("pid1", ('pk1', 1)), ("pid1", ('pk1', 2)), ("pid1", ('pk2', 3)), ("pid1", ('pk2', 4)), ("pid1", ('pk2', 5)), ("pid1", ('pk3', 6)), ("pid1", ('pk4', 7)), ("pid2", ('pk4', 8))] max_partitions_contributed = 3 engine = pipeline_dp.DPEngine( NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10), pipeline_dp.LocalPipelineOperations()) groups = engine._ops.group_by_key(input_col, None) groups = engine._ops.map_values(groups, lambda group: _MockAccumulator(group)) groups = list(groups) expected_data_filtered = [("pid1", _MockAccumulator([ ('pk1', 1), ('pk1', 2), ('pk2', 3), ('pk2', 4), ('pk2', 5), ('pk3', 6), ('pk4', 7), ])), ("pid2", _MockAccumulator([('pk4', 8)]))] self._mock_and_assert_private_partitions(engine, groups, 0, expected_data_filtered, max_partitions_contributed) expected_data_filtered = [ ("pid1", _MockAccumulator([ ('pk1', 1), ('pk1', 2), ('pk2', 3), ('pk2', 4), ('pk2', 5), ('pk3', 6), ('pk4', 7), ])), ] self._mock_and_assert_private_partitions(engine, groups, 3, expected_data_filtered, max_partitions_contributed) expected_data_filtered = [] self._mock_and_assert_private_partitions(engine, groups, 100, expected_data_filtered, max_partitions_contributed)
def test_budget_scopes_no_parentscope(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) # Allocated in the top-level scope with no weight specified budget1 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE) with budget_accountant.scope(weight=0.5): budget2 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE) budget_accountant.compute_budgets() self.assertEqual(budget1.eps, 1.0 / (1.0 + 0.5)) self.assertEqual(budget2.eps, 0.5 / (1.0 + 0.5))
def test_contribution_bounding_bound_input_nothing_dropped(self): input_col = [("pid1", 'pk1', 1), ("pid1", 'pk1', 2), ("pid1", 'pk2', 3), ("pid1", 'pk2', 4)] max_partitions_contributed = 2 max_contributions_per_partition = 2 dp_engine = pipeline_dp.DPEngine( NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-10), pipeline_dp.LocalPipelineOperations()) bound_result = list( dp_engine._bound_contributions( input_col, max_partitions_contributed=max_partitions_contributed, max_contributions_per_partition=max_contributions_per_partition, aggregator_fn=dp_engineTest.aggregator_fn)) expected_result = [(('pid1', 'pk2'), (2, 7, 25)), (('pid1', 'pk1'), (2, 3, 5))] self.assertEqual(set(expected_result), set(bound_result))
def test_compute_budgets(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) budget1 = budget_accountant.request_budget(noise_kind=NoiseKind.LAPLACE) budget2 = budget_accountant.request_budget( noise_kind=NoiseKind.GAUSSIAN, weight=3) budget_accountant.compute_budgets() self.assertEqual(budget1.eps, 0.25) self.assertEqual(budget1.delta, 0) # Delta should be 0 if mechanism is Gaussian. self.assertEqual(budget2.eps, 0.75) self.assertEqual(budget2.delta, 1e-6)
def test_compute_budgets(self): budget_accountant = NaiveBudgetAccountant(total_epsilon=1, total_delta=1e-6) budget1 = budget_accountant.request_budget( mechanism_type=MechanismType.LAPLACE) budget2 = budget_accountant.request_budget( mechanism_type=MechanismType.GAUSSIAN, weight=3) budget_accountant.compute_budgets() self.assertEqual(budget1.eps, 0.25) self.assertEqual(budget1.delta, 0) # Delta should be 0 if mechanism is Laplace. self.assertEqual(budget2.eps, 0.75) self.assertEqual(budget2.delta, 1e-6)