コード例 #1
0
    def test_compute_dp_sum(self):
        params = dp_computations.MeanVarParams(
            eps=0.5,
            delta=1e-10,
            min_value=2,
            max_value=3,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            noise_kind=NoiseKind.LAPLACE)
        l0_sensitivity = params.l0_sensitivity()
        linf_sensitivity = params.max_contributions_per_partition * max(
            params.min_value, params.max_value)

        # Laplace Mechanism
        l1_sensitivity = dp_computations.compute_l1_sensitivity(
            l0_sensitivity, linf_sensitivity)
        results = [
            dp_computations.compute_dp_sum(sum=10, dp_params=params)
            for _ in range(N_ITERATIONS)
        ]
        self._test_laplace_noise(results, 10, params.eps, l1_sensitivity)

        # Gaussian Mechanism
        params.noise_kind = NoiseKind.GAUSSIAN
        l2_sensitivity = dp_computations.compute_l2_sensitivity(
            l0_sensitivity, linf_sensitivity)
        results = [
            dp_computations.compute_dp_sum(sum=10, dp_params=params)
            for _ in range(N_ITERATIONS)
        ]
        self._test_gaussian_noise(results, 10, params.eps, params.delta,
                                  l2_sensitivity)
コード例 #2
0
    def test_compute_dp_sum(self, bound_per_partition):
        min_value = max_value = min_sum_per_partition = max_sum_per_partition = None
        if bound_per_partition:
            min_sum_per_partition, max_sum_per_partition = 2, 3
        else:
            min_value, max_value = 2, 3

        params = dp_computations.ScalarNoiseParams(
            eps=0.5,
            delta=1e-10,
            min_value=min_value,
            max_value=max_value,
            min_sum_per_partition=min_sum_per_partition,
            max_sum_per_partition=max_sum_per_partition,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            noise_kind=NoiseKind.LAPLACE)
        l0_sensitivity = params.l0_sensitivity()
        if bound_per_partition:
            linf_sensitivity = params.max_contributions_per_partition * max(
                params.min_sum_per_partition, params.max_sum_per_partition)
        else:  # bound per contribution
            linf_sensitivity = params.max_contributions_per_partition * max(
                params.min_value, params.max_value)

        # Laplace Mechanism
        l1_sensitivity = dp_computations.compute_l1_sensitivity(
            l0_sensitivity, linf_sensitivity)
        results = [
            dp_computations.compute_dp_sum(sum=10, dp_params=params)
            for _ in range(N_ITERATIONS)
        ]
        self._test_laplace_noise(results=results,
                                 num_trials=N_ITERATIONS,
                                 expected_mean=10,
                                 eps=params.eps,
                                 l1_sensitivity=l1_sensitivity)

        # Gaussian Mechanism
        params.noise_kind = NoiseKind.GAUSSIAN
        l2_sensitivity = dp_computations.compute_l2_sensitivity(
            l0_sensitivity, linf_sensitivity)
        results = [
            dp_computations.compute_dp_sum(sum=10, dp_params=params)
            for _ in range(N_ITERATIONS)
        ]
        self._test_gaussian_noise(results=results,
                                  expected_mean=10,
                                  num_trials=N_ITERATIONS,
                                  eps=params.eps,
                                  delta=params.delta,
                                  l2_sensitivity=l2_sensitivity)
コード例 #3
0
    def test_compute_dp_sum_min_max_zero(self):
        params = dp_computations.ScalarNoiseParams(
            eps=0.5,
            delta=1e-10,
            min_value=0,
            max_value=0,
            min_sum_per_partition=None,
            max_sum_per_partition=None,
            max_partitions_contributed=1,
            max_contributions_per_partition=1,
            noise_kind=NoiseKind.LAPLACE)

        self.assertEqual(0, dp_computations.compute_dp_sum(10, params))
コード例 #4
0
ファイル: accumulator.py プロジェクト: dvadym/PipelineDP
 def compute_metrics(self) -> float:
     return dp_computations.compute_dp_sum(self._sum,
                                           self._params.mean_var_params)
コード例 #5
0
 def compute_metrics(self, sum_: AccumulatorType) -> dict:
     return {
         'sum':
         dp_computations.compute_dp_sum(sum_,
                                        self._params.scalar_noise_params)
     }
コード例 #6
0
ファイル: combiners.py プロジェクト: dvadym/PipelineDP
 def compute_metrics(self, sum: AccumulatorType) -> dict:
     return {
         'sum':
         dp_computations.compute_dp_sum(sum, self._params.mean_var_params)
     }