コード例 #1
0
def main(output_folder, weight_name_save, n_batch, lr_rate, num_layers, n_hidden):
    # Load training data
    sX, sY = getData()

    ## Define NN ##
    X = tf.placeholder(tf.float32, [None, INPUT_SIZE], name="input_x")
    Y = tf.placeholder(tf.float32, [None, OUTPUT_SIZE], name="output_y")
    weights = []
    biases = []

    for i in range(0,num_layers):
        if i ==0:
            weights.append(init_weights((INPUT_SIZE, n_hidden)))
        else:
            weights.append(init_weights((n_hidden, n_hidden)))
        biases.append(init_bias(n_hidden))
    weights.append(init_weights((n_hidden, OUTPUT_SIZE)))
    biases.append(init_bias(OUTPUT_SIZE))

    # Forward propagation
    Yhat = forwardprop(X, weights, biases, num_layers)
    loss = tf.reduce_mean(tf.square(Y-Yhat))
    train = tf.train.AdamOptimizer(learning_rate=lr_rate).minimize(loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        # Training
        for n in range(int(Nsample*Nfile/n_batch)):
            input_X = np.reshape(sX[n*n_batch:(n+1)*n_batch], [n_batch, INPUT_SIZE])
            output_Y = np.reshape(sY[n*n_batch:(n+1)*n_batch], [n_batch, OUTPUT_SIZE])
            feed = {X: input_X, Y: output_Y}
            sess.run(train, feed_dict=feed)

        # Save
        save_weights(weights, biases, output_folder, weight_name_save, num_layers)

        # Test
        Tstate = np.random.randint(2, size=N_pixel)
        TR = pixelDBR.calR(Tstate, dx, N_pixel, wavelength, nh, nl)
        tX = np.reshape(Tstate, [-1, INPUT_SIZE])
        tY = np.reshape(TR, [-1, OUTPUT_SIZE])
        NR = sess.run(Yhat, feed_dict={X: tX})
        Tloss = sess.run(loss, feed_dict={X: tX, Y: tY})
    # sess.close()

    print("LOSS: ", Tloss)
    x = np.reshape(wavelength, wavelength.shape[1])
    TR = np.reshape(TR, wavelength.shape[1])
    NR = np.reshape(NR, wavelength.shape[1])
    plt.figure(1)
    plt.subplot(2, 1, 1)
    plt.plot(x, TR)

    plt.subplot(2, 1, 2)
    plt.plot(x, NR)
    plt.show()
コード例 #2
0
ファイル: DBR_1THz.py プロジェクト: jglee96/1D_DBR
def main():
    X, Y = getData()
    rX = X * np.reshape(pixelDBR.reward(Y, tarwave, wavelength, bandwidth),
                        newshape=(-1, 1))
    rX = np.sum(rX, axis=0)

    minX = np.min(rX)
    rX = rX - minX
    avgX = np.mean(rX)

    result_state = (rX >= avgX).astype(int)
    # result_state = np.reshape(result_state, newshape=N_pixel)
    result_R = pixelDBR.calR(result_state, dx, N_pixel, wavelength, nh, nl)
    result_R = np.reshape(result_R, newshape=(1, wavelength.shape[1]))
    result_reward = pixelDBR.reward(result_R, tarwave, wavelength, bandwidth)
    # result_fwhml, result_fwhmf = pixelDBR.calBand(result_R, wavelength, tarwave, minwave, wavestep, 0.5)
    # result_99l, result_99f = pixelDBR.calBand(result_R, wavelength, tarwave, minwave, wavestep, 0.99)
    print("========        Result      ========")
    print('result reward: ', result_reward)
    # print('resulr fwhm: {} um, {:.3f} THz'.format(result_fwhml, result_fwhmf*10**-12))
    # print('resulr 99% width: {} um, {:.3f} THz'.format(result_99l, result_99f*10**-12))
    thickness = getThickness(result_state, dx, N_pixel)
    print(thickness)

    for idx, x in enumerate(result_state):
        if idx == 0:
            print("[{}, ".format(x), end='')
        elif idx == N_pixel - 1:
            print("{}]".format(x), end='')
        else:
            print("{}, ".format(x), end='')

    x = np.reshape(wavelength, wavelength.shape[1])
    result_R = np.reshape(result_R, wavelength.shape[1])
    plt.figure(1)
    plt.plot(x, result_R)

    plt.figure(2)
    x = (c * (1. / wavelength))
    x = np.reshape(x * (10**-12), wavelength.shape[1])
    plt.plot(x, result_R)

    plt.figure(3)
    lx = np.arange(N_pixel)
    plt.bar(lx, result_state, width=1, color='blue')
    plt.show()
コード例 #3
0
def Ratio_Optimization(output_folder, weight_name_save, n_batch, lr_rate, num_layers, n_hidden):
    init_list_rand = tf.constant(np.random.randint(2, size=(1, N_pixel)), dtype=tf.float32)
    X = tf.get_variable(name='b', initializer=init_list_rand)
    Xint = binaryRound(X)
    Xint = tf.clip_by_value(Xint, clip_value_min=0, clip_value_max=1)
    Y = tf.placeholder(tf.float32, shape=[None, OUTPUT_SIZE], name="output_y")
    weights, biases = load_weights(output_folder, weight_name_save, num_layers)
    Yhat = forwardprop(Xint, weights, biases, num_layers)

    Inval = tf.matmul(Y, tf.transpose(Yhat))
    Outval = tf.matmul((1-Y), tf.transpose(Yhat))
    # cost = Inval / Outval
    cost = Outval / Inval
    optimizer = tf.train.AdamOptimizer(learning_rate=1E-3).minimize(cost, var_list=[X])

    design_y = pd.read_csv(PATH + "/SpectFile(200,800)_500.csv", header=None)
    design_y = design_y.values

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for n in range(10000):
            sess.run(optimizer, feed_dict={Y: design_y})
            if (n % 100) == 0:
                temp_R = np.reshape(sess.run(Yhat), newshape=(1, wavelength.shape[1]))
                temp_cost = sess.run(cost, feed_dict={Y: design_y})[0][0]
                temp_reward = pixelDBR.reward(temp_R, tarwave, wavelength, bandwidth)
                print("{}th epoch, reward: {:.4f}, cost: {:.4f}".format(n, temp_reward[0], temp_cost))
        optimized_x = np.reshape(Xint.eval().astype(int), newshape=N_pixel)
        # optimized_R = np.reshape(sess.run(Yhat), newshape=(1, wavelength.shape[1]))
        optimized_R = np.reshape(pixelDBR.calR(optimized_x, dx, N_pixel, wavelength, nh, nl), newshape=(1, wavelength.shape[1]))
        optimized_reward = pixelDBR.reward(optimized_R, tarwave, wavelength, bandwidth)
    print("Optimized result: {:.4f}".format(optimized_reward[0]))
    print(optimized_x)

    wavelength_x = np.reshape(wavelength, wavelength.shape[1])
    optimized_R = np.reshape(optimized_R, wavelength.shape[1])
    plt.figure(1)
    plt.subplot(2, 1, 1)
    plt.plot(wavelength_x, optimized_R)

    pixel_x = np.arange(N_pixel)
    plt.subplot(2, 1, 2)
    plt.bar(pixel_x, optimized_x, width=1, color="black")
    plt.show()
コード例 #4
0
def main():
    X, Y = getData()
    rX = X * np.reshape(pixelDBR.reward(Y, tarwave, wavelength, bandwidth),
                        newshape=(-1, 1))
    rX = np.sum(rX, axis=0)

    minX = np.min(rX)
    rX = rX - minX
    avgX = np.mean(rX)

    result_state = (rX >= avgX).astype(int)
    # result_state = np.reshape(result_state, newshape=N_pixel)
    result_R = pixelDBR.calR(result_state, dx, N_pixel, wavelength, nh, nl)
    result_R = np.reshape(result_R, newshape=(1, wavelength.shape[1]))
    result_reward = pixelDBR.reward(result_R, tarwave, wavelength, bandwidth)
    result_fwhm = pixelDBR.calFWHM(result_R, wavelength, tarwave)
    print('result reward: ', result_reward)
    print('resulr fwhm: ', result_fwhm)

    x = np.reshape(wavelength, wavelength.shape[1])
    result_R = np.reshape(result_R, wavelength.shape[1])
    plt.figure(2)
    plt.subplot(2, 1, 1)
    plt.plot(x, result_R)

    lx = np.arange(N_pixel)
    plt.subplot(2, 1, 2)
    plt.bar(lx, result_state, width=1, color='blue')
    # plt.show()

    plt.figure(1)
    plt.bar(lx, rX, width=1, color='blue')
    plt.show()

    thickness = getThickness(result_state, dx, N_pixel)
    print(thickness)
コード例 #5
0
import numpy as np
import pixelDBR
# import tensorflow as tf
from dbr_arla_20190517 import N_pixel, dx, nh, nl, wavelength, tarwave, Nsample

PATH = 'D:/NBTP_Lab/DBR/DBR_ARLA(python)'
TRAIN_PATH = PATH + '/trainset' + '/01'

print('N_pixel: {}, nh: {:.3f}, nl: {:.3f}'.format(N_pixel, nh, nl))

for i in range(10):
    sname = TRAIN_PATH + '/state_' + str(i) + '.csv'
    Rname = TRAIN_PATH + '/R_' + str(i) + '.csv'
    n = 0
    for n in range(Nsample):
        state = np.random.randint(2, size=N_pixel)

        R = pixelDBR.calR(state, dx, N_pixel, wavelength, nh, nl)
        state = np.reshape(state, (1, N_pixel))
        R = np.reshape(R, (1, wavelength.shape[1]))

        with open(sname, "a") as sf:
            np.savetxt(sf, state, fmt='%d', delimiter=',')
        with open(Rname, "a") as Rf:
            np.savetxt(Rf, R, fmt='%.5f', delimiter=',')

        if (n + 1) % 1000 == 0:
            print('{}th {}step'.format(i + 1, n + 1))

print('*****Train Set Prepared*****')
コード例 #6
0
ファイル: dbr_net.py プロジェクト: jglee96/1D_DBR
def Ratio_Optimization(output_folder, weight_name_save, n_batch, lr_rate,
                       num_layers, n_hidden):
    OUTPUT_SIZE = wavelength.shape[1]

    idx_1 = np.where(wavelength == int(tarwave - bandwidth / 2))[1][0]
    idx_2 = np.where(wavelength == int(tarwave + bandwidth / 2))[1][0]
    design_y = np.zeros((1, OUTPUT_SIZE))
    design_y[0, idx_1:idx_2 + 1] = 1
    design_y.tolist()

    init_list_rand = tf.constant(np.random.randint(2, size=(1, N_pixel)),
                                 dtype=tf.float32)
    X = tf.get_variable(name='b', initializer=init_list_rand)
    Xint = binaryRound(X)
    Xint = tf.clip_by_value(Xint, clip_value_min=0, clip_value_max=1)
    Y = tf.placeholder(tf.float32, shape=[None, OUTPUT_SIZE], name="output_y")
    weights, biases = load_weights(output_folder, weight_name_save, num_layers)
    Yhat = forwardprop(Xint, weights, biases, num_layers)

    idxwidth = idx_2 - idx_1
    Inval = tf.reduce_mean(tf.matmul(Y, tf.transpose(Yhat))) / idxwidth
    Outval = tf.reduce_mean(tf.matmul(
        (1 - Y), tf.transpose(Yhat))) / (OUTPUT_SIZE - idxwidth)
    # cost = Outval / Inval
    # cost = Outval * (10 - Inval)
    cost = Outval * (1 - Inval)
    optimizer = tf.train.AdamOptimizer(learning_rate=1E-4).minimize(
        cost, var_list=[X])

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for n in range(20000):
            sess.run(optimizer, feed_dict={Y: design_y})
            if (n % 100) == 0:
                temp_R = np.reshape(sess.run(Yhat),
                                    newshape=(1, wavelength.shape[1]))
                temp_cost = sess.run(cost, feed_dict={Y: design_y})
                temp_Inval = sess.run(Inval, feed_dict={Y: design_y})
                temp_reward = pixelDBR.reward(temp_R, tarwave, wavelength,
                                              bandwidth)
                print(
                    "{}th epoch, reward: {:.4f}, cost: {:.4f}, Inval: {:.4f}".
                    format(n, temp_reward[0], temp_cost, temp_Inval))
        op_x = np.reshape(Xint.eval().astype(int), newshape=N_pixel)
        # op_R = np.reshape(sess.run(Yhat), newshape=(1, wavelength.shape[1]))
        op_R = np.reshape(pixelDBR.calR(op_x, dx, N_pixel, wavelength, nh, nl),
                          newshape=(1, wavelength.shape[1]))
        op_reward = pixelDBR.reward(op_R, tarwave, wavelength, bandwidth)
        op_fwhml, op_fwhmf = pixelDBR.calBand(op_R, wavelength, tarwave,
                                              minwave, wavestep, 0.5)
        op_99l, op_99f = pixelDBR.calBand(op_R, wavelength, tarwave, minwave,
                                          wavestep, 0.99)
    print("========        Result      ========")
    print('result fwhm: {} um, {:.3f} THz'.format(op_fwhml,
                                                  op_fwhmf * 10**-12))
    print('result 99% width: {} um, {:.3f} THz'.format(op_99l,
                                                       op_99f * 10**-12))
    print("Optimized result: {:.4f}".format(op_reward[0]))
    for idx, x in enumerate(op_x):
        if idx == 0:
            print("[{}, ".format(x), end='')
        elif idx == N_pixel - 1:
            print("{}]".format(x), end='')
        else:
            print("{}, ".format(x), end='')

    wavelength_x = np.reshape(wavelength, wavelength.shape[1])
    op_R = np.reshape(op_R, wavelength.shape[1])
    plt.figure(1)
    plt.plot(wavelength_x, op_R)

    plt.figure(2)
    wavelength_x = (c * (1. / wavelength)) * 10**(-12)
    wavelength_x = np.reshape(wavelength_x, wavelength.shape[1])
    plt.plot(wavelength_x, op_R)

    plt.figure(3)
    pixel_x = np.arange(N_pixel)
    plt.bar(pixel_x, op_x, width=1, color="black")
    plt.show()
コード例 #7
0
ファイル: dbr_net.py プロジェクト: jglee96/1D_DBR
def main(output_folder, weight_name_save, n_batch, lr_rate, num_layers,
         n_hidden):
    # Load training data
    sX, sY = getData()
    Nsample = sY.shape[0]
    INPUT_SIZE = sX.shape[1]
    OUTPUT_SIZE = sY.shape[1]

    Nr = 0.8
    Nlearning = int(Nr * Nsample)
    Ntest = Nsample - Nlearning

    testX = sX[Nlearning:, :]
    testY = sY[Nlearning:, :]

    trainX = sX[0:Nlearning, :]
    trainY = sY[0:Nlearning, :]
    trainX_total = trainX
    trainY_total = trainY
    n_copy = 10
    for i in range(n_copy):
        trainX, trainY = shuffle_data(trainX, trainY)
        trainX_total = np.concatenate((trainX_total, trainX), axis=0)
        trainY_total = np.concatenate((trainY_total, trainY), axis=0)

    ## Define NN ##
    X = tf.placeholder(tf.float32, [None, INPUT_SIZE], name="input_x")
    Y = tf.placeholder(tf.float32, [None, OUTPUT_SIZE], name="output_y")
    weights = []
    biases = []

    for i in range(0, num_layers):
        if i == 0:
            weights.append(init_weights((INPUT_SIZE, n_hidden)))
        else:
            weights.append(init_weights((n_hidden, n_hidden)))
        biases.append(init_bias(n_hidden))
    weights.append(init_weights((n_hidden, OUTPUT_SIZE)))
    biases.append(init_bias(OUTPUT_SIZE))

    # Forward propagation
    Yhat = forwardprop(X, weights, biases, num_layers)
    loss = tf.reduce_mean(tf.square(Y - Yhat))
    train = tf.train.AdamOptimizer(learning_rate=lr_rate).minimize(loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        # Training
        Training_loss = []
        for n in range(int(Nlearning * n_copy / n_batch)):
            input_X = np.reshape(trainX_total[n * n_batch:(n + 1) * n_batch],
                                 [n_batch, INPUT_SIZE])
            output_Y = np.reshape(trainY_total[n * n_batch:(n + 1) * n_batch],
                                  [n_batch, OUTPUT_SIZE])
            feed = {X: input_X, Y: output_Y}
            _, temp = sess.run([train, loss], feed_dict=feed)
            Training_loss.append(temp)

        # Save
        save_weights(weights, biases, output_folder, weight_name_save,
                     num_layers)

        # Test
        Test_loss = []
        test_batch = int(n_batch / 20)
        for n in range(int(Ntest / test_batch)):
            input_X = np.reshape(testX[n * test_batch:(n + 1) * test_batch],
                                 [test_batch, INPUT_SIZE])
            output_Y = np.reshape(testY[n * test_batch:(n + 1) * test_batch],
                                  [test_batch, OUTPUT_SIZE])
            feed = {X: input_X, Y: output_Y}
            temp = sess.run(loss, feed_dict=feed)
            Test_loss.append(temp)

        # Example test
        Tstate = np.random.randint(2, size=N_pixel)
        TR = pixelDBR.calR(Tstate, dx, N_pixel, wavelength, nh, nl)
        tX = np.reshape(Tstate, [-1, INPUT_SIZE])
        tY = np.reshape(TR, [-1, OUTPUT_SIZE])
        NR = sess.run(Yhat, feed_dict={X: tX})
        Tloss = sess.run(loss, feed_dict={X: tX, Y: tY})
    # sess.close()

    print("LOSS: ", Tloss)
    x = np.reshape(wavelength, wavelength.shape[1])
    TR = np.reshape(TR, wavelength.shape[1])
    NR = np.reshape(NR, wavelength.shape[1])
    plt.figure(1)
    plt.subplot(2, 1, 1)
    plt.plot(x, TR)

    plt.subplot(2, 1, 2)
    plt.plot(x, NR)

    plt.figure(3)
    plt.plot(Training_loss)
    with open('D:/1D_DBR/FCNN_1THz/Training_loss.csv', 'w') as lossfile:
        np.savetxt(lossfile, Training_loss, delimiter=',', fmt='%.5f')

    plt.figure(4)
    plt.plot(Test_loss)
    with open('D:/1D_DBR/FCNN_1THz/Test_loss.csv', 'w') as lossfile:
        np.savetxt(lossfile, Test_loss, delimiter=',', fmt='%.5f')
    plt.show()