コード例 #1
0
def create_model_fn(args):

    net = nn.Sequential(
        LambdaLayer(lambda x: 2 * (256 / 255) * x - 1),
        PixelCNNpp(nr_resnet=args.nr_resnet,
                   nr_filters=args.nr_filters,
                   nr_scales=args.nr_scales,
                   input_channels=3,
                   nr_logistic_mix=args.nr_logistic_mix,
                   dropout=args.dropout))

    model = AutoregressiveSubsetFlow2d(
        base_shape=(
            3,
            32,
            32,
        ),
        transforms=[
            MultivariateMOLAutoregressiveSubsetTransform2d(
                net,
                channels=3,
                num_mixtures=args.nr_logistic_mix,
                num_bins=256,
                mean_lambd=lambda x: 2 * (x * 256 / 255) - 1)
        ])

    return model
コード例 #2
0
def create_model_fn(args):

    transforms = []
    for i in range(args.num_flows):

        transforms += [
            QuadraticSplineAutoregressiveSubsetTransform2d(
                DropPixelCNN(3,
                             num_params=2 * args.num_bins[i] + 1,
                             num_blocks=args.num_blocks[i],
                             filters=args.filters[i],
                             kernel_size=args.kernel_size[i],
                             kernel_size_in=args.kernel_size_in[i],
                             output_filters=args.output_filters[i],
                             dropout=args.dropout[i],
                             init_transforms=lambda x: 2 * x - 1),
                num_bins=args.num_bins[i])
        ]

    model = AutoregressiveSubsetFlow2d(base_shape=(
        3,
        32,
        32,
    ),
                                       transforms=transforms)

    return model
コード例 #3
0
def create_model_fn(args):

    model = AutoregressiveSubsetFlow2d(base_shape = (3,32,32,),
                                       transforms = [
                                       LinearSplineAutoregressiveSubsetTransform2d(PixelCNN(3, num_params=args.num_bins,
                                                                                            num_blocks=args.num_blocks,
                                                                                            filters=args.filters,
                                                                                            kernel_size=args.kernel_size,
                                                                                            kernel_size_in=args.kernel_size_in,
                                                                                            output_filters=args.output_filters,
                                                                                            init_transforms=lambda x: 2*x-1), num_bins=args.num_bins),
                                       ])

    return model
コード例 #4
0
setup.register_data(data.train, data.test)

###################
## Specify model ##
###################

model = AutoregressiveSubsetFlow2d(
    base_shape=(
        3,
        32,
        32,
    ),
    transforms=[
        QuadraticSplineAutoregressiveSubsetTransform2d(PixelCNN(
            3,
            num_params=2 * args.num_bins + 1,
            num_blocks=args.num_blocks,
            filters=args.filters,
            kernel_size=args.kernel_size,
            kernel_size_in=args.kernel_size_in,
            output_filters=args.output_filters,
            init_transforms=lambda x: 2 * x - 1),
                                                       num_bins=args.num_bins),
    ])

setup.register_model(model)

#######################
## Specify optimizer ##
#######################
    transforms += [
        QuadraticSplineAutoregressiveSubsetTransform2d(
            PixelCNN(3,
                     num_params=2 * args.num_bins[i] + 1,
                     num_blocks=args.num_blocks[i],
                     filters=args.filters[i],
                     kernel_size=args.kernel_size[i],
                     kernel_size_in=args.kernel_size_in[i],
                     output_filters=args.output_filters[i],
                     init_transforms=lambda x: 2 * x - 1),
            num_bins=args.num_bins[i])
    ]

model = AutoregressiveSubsetFlow2d(base_shape=(
    3,
    64,
    64,
),
                                   transforms=transforms)

setup.register_model(model)

#######################
## Specify optimizer ##
#######################

optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                           milestones=args.milestones,
                                           gamma=args.gamma)

setup.register_optimizer(optimizer, scheduler)
コード例 #6
0
data = CategoricalCIFAR10()

setup.register_data(data.train, data.test)

###################
## Specify model ##
###################

net = nn.Sequential(LambdaLayer(lambda x: 2 * (256 / 255) * x - 1),
                    PixelCNNpp(nr_resnet=args.nr_resnet, nr_filters=args.nr_filters, nr_scales=args.nr_scales,
                               input_channels=3, nr_logistic_mix=args.nr_logistic_mix, dropout=args.dropout))

model = AutoregressiveSubsetFlow2d(base_shape = (3,32,32,),
                                   transforms = [
                                   MultivariateMOLAutoregressiveSubsetTransform2d(net,
                                                                                  channels=3,
                                                                                  num_mixtures=args.nr_logistic_mix,
                                                                                  num_bins=256,
                                                                                  mean_lambd=lambda x: 2*(x*256/255)-1)
                                   ])

setup.register_model(model)

#######################
## Specify optimizer ##
#######################

optimizer = optim.Adam(model.parameters(), lr=args.lr)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.gamma)

setup.register_optimizer(optimizer, scheduler)