コード例 #1
0
def generate_noise_sim(covsqrt, ivars, seed=None, dtype=None):
    """
    Supports only two cases
    1) nfreqs>=1,npol=3
    2) nfreqs=1,npol=1
    """
    if isinstance(seed, int): seed = (seed, )
    assert np.all(np.isfinite(covsqrt))
    shape, wcs = covsqrt.shape, covsqrt.wcs
    Ny, Nx = shape[-2:]
    ncomps = covsqrt.shape[0]
    assert ncomps == covsqrt.shape[1]
    assert ((ncomps % 3) == 0) or (ncomps == 1)
    nfreqs = 1 if ncomps == 1 else ncomps // 3
    if ncomps == 1: npol = 1
    else: npol = 3
    wmaps = enmap.extract(ivars, shape[-2:], wcs)
    nsplits = wmaps.shape[1]

    if dtype is np.float32: ctype = np.complex64
    elif dtype is np.float64: ctype = np.complex128

    # Old way with loop
    kmap = []
    for i in range(nsplits):
        if seed is None:
            np.random.seed(None)
        else:
            np.random.seed(seed + (i, ))
        rmap = enmap.rand_gauss_harm((ncomps, Ny, Nx),
                                     covsqrt.wcs).astype(ctype)
        kmap.append(enmap.map_mul(covsqrt, rmap))
    del covsqrt, rmap
    kmap = enmap.enmap(np.stack(kmap), wcs)
    outmaps = enmap.ifft(kmap, normalize="phys").real
    del kmap

    # Need to test this more ; it's only marginally faster and has different seed behaviour
    # covsqrt = icovsqrt
    # np.random.seed(seed)
    # rmap = enmap.rand_gauss_harm((nsplits,ncomps,Ny, Nx),covsqrt.wcs)
    # kmap = enmap.samewcs(np.einsum("abyx,cbyx->cayx", covsqrt, rmap),rmap)
    # outmaps = enmap.ifft(kmap, normalize="phys").real

    # isivars = 1/np.sqrt(wmaps)
    with np.errstate(divide='ignore', invalid='ignore'):
        isivars = ((1. / wmaps) - (1. / wmaps.sum(axis=1)[:, None, ...]))**0.5
    isivars[~np.isfinite(isivars)] = 0

    assert np.all(np.isfinite(outmaps))
    # Divide by hits
    for ifreq in range(nfreqs):
        outmaps[:, ifreq * npol:(ifreq + 1) * npol,
                ...] = outmaps[:, ifreq * npol:(ifreq + 1) * npol,
                               ...] * isivars[ifreq, ...] * np.sqrt(nsplits)

    retmaps = outmaps.reshape((nsplits, nfreqs, npol, Ny, Nx)).swapaxes(0, 1)
    assert np.all(np.isfinite(retmaps))
    return retmaps, wmaps
コード例 #2
0
ファイル: simTools.py プロジェクト: guanyilun/actsims
def getActpolNoiseSim(noiseSeed,
                      psa,
                      noisePsdDir,
                      freqs,
                      verbose=True,
                      useCovSqrt=True,
                      killFactor=30.,
                      fillValue=0.,
                      noiseDiagsOnly=False,
                      splitWanted=None):
    #return array of T, Q, U
    #to-do: these are currently using numpy.FFT and are slow; switch to FFTW if installed.

    #Could also have an alternative version of this using enlib tools.

    if useCovSqrt:
        #in this case it was the CovSqrt's that were saved.  This is based on Mat's code in orphics.
        if verbose:
            print(
                'getActpolNoiseSim(): getting weight maps; assuming I for all')

        iqu = 'I'  #FOR NOW

        # stackOfMaskMaps = [enmap.read_map(noisePsdDir + 'totalWeightMap' \
        #                                                 + iqu + '_' + psa + '_' + freq  + '_fromenlib.fits') \
        #                                  for freq in freqs ]

        if splitWanted is None:

            stackOfMaskMaps = [enmap.read_map(noisePsdDir + 'totalWeightMap'\
                                              + iqu + '_' + psa + '_' + freq  + '_fromenlib.fits') \
                               for freq in freqs ]
        else:
            stackOfMaskMaps = [enmap.read_map(noisePsdDir + 'weightMap_split' + str(splitWanted) \
                                              + iqu + '_' + psa + '_' + freq  + '_fromenlib.fits') \
                               for freq in freqs ]

        thisWcs = stackOfMaskMaps[0].wcs

        maskMaps = enmap.enmap(np.stack(stackOfMaskMaps), thisWcs)

        #first one is for IXI, QxQ, UXU only
        print("loading")
        if False:
            print('loading ' + noisePsdDir +
                  '/bigMatrixNoisePsdsCovSqrtDiags_' + psa + '.fits HACKING')
            covsqrt = enmap.read_fits(noisePsdDir +
                                      '/bigMatrixNoisePsdsCovSqrtDiags_' +
                                      psa + '.fits')
        if False:
            print('loading ' + noisePsdDir + '/bigMatrixNoisePsdsCovSqrt_' +
                  psa + '.fits')
            covsqrt = enmap.read_fits(noisePsdDir +
                                      '/bigMatrixNoisePsdsCovSqrt_' + psa +
                                      '.fits')

        if noiseDiagsOnly:
            print('loading ' + noisePsdDir +
                  '/noisePsds_flattened_covSqrtDiags_' + psa + '.fits')
            covsqrt = enmap.read_fits(noisePsdDir +
                                      '/noisePsds_flattened_covSqrtDiags_' +
                                      psa + '.fits')
        elif True:
            print('loading ' + noisePsdDir + '/noisePsds_flattened_covSqrt_' +
                  psa + '.fits')
            covsqrt = enmap.read_fits(noisePsdDir +
                                      '/noisePsds_flattened_covSqrt_' + psa +
                                      '.fits')
        print("loading done")

        if verbose:
            print('getActpolNoiseSim(): running map_mul to make random phases')

        #get the right normalization
        covsqrt *= np.sqrt(
            np.prod(covsqrt.shape[-2:]) /
            enmap.area(covsqrt.shape[-2:], thisWcs))

        np.random.seed(noiseSeed)
        print("randmap")
        rmap = enmap.rand_gauss_harm(
            (covsqrt.shape[0], covsqrt.shape[-2:][0], covsqrt.shape[-2:][1]),
            thisWcs)
        print("randmap done")
        print("map_mul")
        kmap = enmap.map_mul(covsqrt, rmap)
        print("map_mul done")

        #old way:
        # kmapReshape = kmap.reshape((4, kmap.shape[-2:][0], kmap.shape[-2:][1]))
        # outMaps = enmap.ifft(kmapReshape).real
        # kmap /= sqrt(mask)

        if verbose:
            print('getActpolNoiseSim(): inverse transforming')
            print('you are transforming %d maps' % kmap.shape[0])
        spin = np.repeat([0], kmap.shape[0])
        print("fft")
        outMaps = enmap.harm2map(kmap, iau=False, spin=spin)
        print("fft done")
        #now reshape to have shape [nfreqs, 3, Ny, Nx]
        #The "order = 'F' (row vs. column ordering) is due to the ordering that is done
        #in makeNoisePsds.py for the dichroic arrays,
        #namely I90, Q90, U90, I150, Q150, U150.

        outMaps = outMaps.reshape(len(freqs),
                                  outMaps.shape[0] / len(freqs),
                                  outMaps.shape[-2],
                                  outMaps.shape[-1],
                                  order='F')

        for fi, freq in enumerate(freqs):
            #Note each frequency has its own maskmap, so this loop is important
            thisMaskMap = np.squeeze(maskMaps[fi])
            outMaps[fi, :, :, :] /= np.sqrt(thisMaskMap)

            #Loop over T,Q,U.  Couldn't think of clever way to vectorize this part..
            for z in range(outMaps.shape[-3]):
                outMaps[fi, z][thisMaskMap < thisMaskMap[np.where(np.isfinite(thisMaskMap))].max() / killFactor] \
                    = fillValue

        if verbose:
            print('getActpolNoiseSim(): done ')

        return outMaps

    else:
        raise ValueError('older ways of getting the noise maps are deprecated')
コード例 #3
0
    for amask in ['old', 'new']:

        mask = masks[amask]
        shape, wcs = mask.shape, mask.wcs
        modlmap = enmap.modlmap(shape, wcs)
        Ny, Nx = shape[-2:]

        n2d = rednoise(modlmap, rms_noise=20., lknee=3000., alpha=-4.5)
        n2d[modlmap < 100] = 0

        bin_edges = np.arange(100, 8000, 40)
        binner = stats.bin2D(modlmap, bin_edges)
        cents, n1d = binner.bin(n2d)

        covsqrt = get_covsqrt(n2d[None, None].copy())
        rmap = enmap.rand_gauss_harm((1, Ny, Nx), covsqrt.wcs)
        kmap = enmap.map_mul(covsqrt, rmap)
        imap = enmap.ifft(kmap, normalize="phys").real

        kmap = enmap.fft(imap * mask, normalize="phys")
        p2d = np.real(kmap * np.conjugate(kmap)) / np.mean(mask**2.)

        cents, p1d = binner.bin(p2d)

        pl.add(cents, p1d / n1d, label=method + amask)
pl.hline(y=1)
pl.done()

# pl = io.Plotter(xyscale='linlog')
# pl.add(cents,p1d)
# pl.add(cents,n1d)