コード例 #1
0
 def apply(self, tod, inplace=False):
     if inplace: tod = np.array(tod)
     ftod = fft.rfft(tod)
     # Candidate for speedup in C
     norm = tod.shape[1]
     for bi, b in enumerate(self.bins):
         ftod[:, b[0]:b[1]] *= self.ips_binned[:, None, bi] / norm
     # I divided by the normalization above instead of passing normalize=True
     # here to reduce the number of operations needed
     fft.irfft(ftod, tod)
     return tod
コード例 #2
0
 def apply(self, tod, inplace=False, slow=False):
     if inplace: tod = np.array(tod)
     apply_window(tod, self.nwin)
     ftod = fft.rfft(tod)
     norm = tod.shape[1]
     if slow:
         for bi, b in enumerate(self.bins):
             # Want to multiply by iD + siViV'
             ft = ftod[:, b[0]:b[1]]
             iD = self.iD[bi] / norm
             iV = self.iV[bi] / norm**0.5
             ft[:] = iD[:, None] * ft + self.s * iV.dot(iV.T.dot(ft))
     else:
         so3g.nmat_detvecs_apply(ftod.view(tod.dtype), self.bins, self.iD,
                                 self.iV, self.s, norm)
     # I divided by the normalization above instead of passing normalize=True
     # here to reduce the number of operations needed
     fft.irfft(ftod, tod)
     apply_window(tod, self.nwin)
     return tod
コード例 #3
0
 def build(self, tod, **kwargs):
     ps = np.abs(fft.rfft(tod))**2
     if self.spacing == "exp":
         bins = utils.expbin(ps.shape[-1], nbin=self.nbin, nmin=self.nmin)
     elif self.spacing == "lin":
         bins = utils.expbin(ps.shape[-1], nbin=self.nbin, nmin=self.nmin)
     else:
         raise ValueError("Unrecognized spacing '%s'" % str(self.spacing))
     ps_binned = utils.bin_data(bins, ps)
     ips_binned = 1 / ps_binned
     # Compute the representative inverse variance per sample
     ivar = np.zeros(len(tod))
     for bi, b in enumerate(bins):
         ivar += ips_binned[:, bi] * (b[1] - b[0])
     ivar /= bins[-1, 1] - bins[0, 0]
     ivar *= tod.shape[1]
     return NmatUncorr(spacing=self.spacing,
                       nbin=len(bins),
                       nmin=self.nmin,
                       bins=bins,
                       ips_binned=ips_binned,
                       ivar=ivar)
コード例 #4
0
 def __call__(self, scan, tod):
     ft = fft.rfft(tod)
     freq = fft.rfftfreq(scan.nsamp, 1 / scan.srate)
     ft *= (1 + np.maximum(freq / self.fknee, self.tol)**self.alpha)**-1
     fft.irfft(ft, tod, normalize=True)
コード例 #5
0
def highpass(tod, fknee=1e-2, alpha=3):
    ft = fft.rfft(tod)
    freq = fft.rfftfreq(tod.shape[1])
    ft /= 1 + (freq / fknee)**-alpha
    return fft.irfft(ft, tod, normalize=True)
コード例 #6
0
    def build(self, tod, srate, **kwargs):
        # Apply window before measuring noise model
        nwin = utils.nint(self.window / srate)
        apply_window(tod, nwin)
        ft = fft.rfft(tod)
        # Unapply window again
        apply_window(tod, nwin, -1)
        ndet, nfreq = ft.shape
        nsamp = tod.shape[1]
        # First build our set of eigenvectors in two bins. The first goes from
        # 0.25 to 4 Hz the second from 4Hz and up
        mode_bins = makebins(self.mode_bins, srate, nfreq, 1000,
                             rfun=np.round)[1:]
        # Then use these to get our set of basis vectors
        vecs = find_modes_jon(ft,
                              mode_bins,
                              eig_lim=self.eig_lim,
                              single_lim=self.single_lim,
                              verbose=self.verbose)
        nmode = vecs.shape[1]
        if vecs.size == 0:
            raise errors.ModelError("Could not find any noise modes")
        # Cut bins that extend beyond our max frequency
        bin_edges = self.bin_edges[self.bin_edges < srate / 2 * 0.99]
        bins = makebins(bin_edges, srate, nfreq, nmin=2 * nmode, rfun=np.round)
        nbin = len(bins)
        # Now measure the power of each basis vector in each bin. The residual
        # noise will be modeled as uncorrelated
        E = np.zeros([nbin, nmode])
        D = np.zeros([nbin, ndet])
        Nd = np.zeros([nbin, ndet])
        for bi, b in enumerate(bins):
            # Skip the DC mode, since it's it's unmeasurable and filtered away
            b = np.maximum(1, b)
            E[bi], D[bi], Nd[bi] = measure_detvecs(ft[:, b[0]:b[1]], vecs)
        # Optionally downweight the lowest frequency bins
        if self.downweight != None and len(self.downweight) > 0:
            D[:len(self.downweight)] /= np.array(self.downweight)[:, None]
        # Instead of VEV' we can have just VV' if we bake sqrt(E) into V
        V = vecs[None] * E[:, None]**0.5
        # At this point we have a model for the total noise covariance as
        # N = D + VV'. But since we're doing inverse covariance weighting
        # we need a similar representation for the inverse iN. The function
        # woodbury_invert computes iD, iV, s such that iN = iD + s iV iV'
        # where s usually is -1, but will become +1 if one inverts again
        iD, iV, s = woodbury_invert(D, V)
        # Also compute a representative white noise level
        bsize = bins[:, 1] - bins[:, 0]
        ivar = np.sum(iD * bsize[:, None], 0) / np.sum(bsize)
        # What about units? I haven't applied any fourier unit factors so far,
        # so we're in plain power units. From the uncorrelated model I found
        # that factor of tod.shape[1] is needed
        iD *= nsamp
        iV *= nsamp**0.5
        ivar *= nsamp

        # Fix dtype
        bins = np.ascontiguousarray(bins.astype(np.int32))
        D = np.ascontiguousarray(iD.astype(tod.dtype))
        V = np.ascontiguousarray(iV.astype(tod.dtype))
        iD = np.ascontiguousarray(D.astype(tod.dtype))
        iV = np.ascontiguousarray(V.astype(tod.dtype))

        return NmatDetvecs(bin_edges=self.bin_edges,
                           eig_lim=self.eig_lim,
                           single_lim=self.single_lim,
                           window=self.window,
                           nwin=nwin,
                           downweight=self.downweight,
                           verbose=self.verbose,
                           bins=bins,
                           D=D,
                           V=V,
                           iD=iD,
                           iV=iV,
                           s=s,
                           ivar=ivar)