def test_get_suggestion(self): trials = [ api_pb2.Trial( name="first-trial", spec=api_pb2.TrialSpec( objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, objective_metric_name="Validation-Accuracy", goal=0.99), parameter_assignments=api_pb2.TrialSpec. ParameterAssignments(assignments=[ api_pb2.ParameterAssignment( name="architecture", value="[[3], [0, 1], [0, 0, 1], [2, 1, 0, 0]]", ), api_pb2.ParameterAssignment( name="nn_config", value="{'num_layers': 4}", ), ])), status=api_pb2.TrialStatus( observation=api_pb2.Observation(metrics=[ api_pb2.Metric(name="Validation-Accuracy", value="0.88"), ]), condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED, )), api_pb2.Trial( name="second-trial", spec=api_pb2.TrialSpec( objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, objective_metric_name="Validation-Accuracy", goal=0.99), parameter_assignments=api_pb2.TrialSpec. ParameterAssignments(assignments=[ api_pb2.ParameterAssignment( name="architecture", value="[[1], [0, 1], [2, 1, 1], [2, 1, 1, 0]]", ), api_pb2.ParameterAssignment( name="nn_config", value="{'num_layers': 4}", ), ], )), status=api_pb2.TrialStatus( observation=api_pb2.Observation(metrics=[ api_pb2.Metric(name="Validation-Accuracy", value="0.84"), ]), condition=api_pb2.TrialStatus.TrialConditionType.SUCCEEDED, )) ] experiment = api_pb2.Experiment( name="enas-experiment", spec=api_pb2.ExperimentSpec( algorithm=api_pb2.AlgorithmSpec(algorithm_name="enas", ), objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, goal=0.9, objective_metric_name="Validation-Accuracy"), parallel_trial_count=2, max_trial_count=10, nas_config=api_pb2.NasConfig( graph_config=api_pb2.GraphConfig(num_layers=4, input_sizes=[32, 32, 8], output_sizes=[10]), operations=api_pb2.NasConfig.Operations(operation=[ api_pb2.Operation( operation_type="convolution", parameter_specs=api_pb2.Operation. ParameterSpecs(parameters=[ api_pb2.ParameterSpec( name="filter_size", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["5"])), api_pb2.ParameterSpec( name="num_filter", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["128"])), api_pb2.ParameterSpec( name="stride", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["1", "2"])), ])), api_pb2.Operation( operation_type="reduction", parameter_specs=api_pb2.Operation. ParameterSpecs(parameters=[ api_pb2.ParameterSpec( name="reduction_type", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["max_pooling"])), api_pb2.ParameterSpec( name="pool_size", parameter_type=api_pb2.INT, feasible_space=api_pb2.FeasibleSpace( min="2", max="3", step="1", list=[])), ])), ], )))) request = api_pb2.GetSuggestionsRequest( experiment=experiment, trials=trials, request_number=2, ) get_suggestion = self.test_server.invoke_unary_unary( method_descriptor=( api_pb2.DESCRIPTOR.services_by_name['Suggestion']. methods_by_name['GetSuggestions']), invocation_metadata={}, request=request, timeout=100) response, metadata, code, details = get_suggestion.termination() print(response.parameter_assignments) self.assertEqual(code, grpc.StatusCode.OK) self.assertEqual(2, len(response.parameter_assignments))
def test_get_suggestion(self): trials = [ api_pb2.Trial( name="test-asfjh", spec=api_pb2.TrialSpec(objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, objective_metric_name="metric-2", goal=0.9), parameter_assignments=api_pb2.TrialSpec. ParameterAssignments(assignments=[ api_pb2.ParameterAssignment( name="param-1", value="2", ), api_pb2.ParameterAssignment( name="param-2", value="cat1", ), api_pb2.ParameterAssignment( name="param-3", value="2", ), api_pb2.ParameterAssignment( name="param-4", value="3.44", ) ])), status=api_pb2.TrialStatus(observation=api_pb2.Observation( metrics=[ api_pb2.Metric(name="metric=1", value="435"), api_pb2.Metric(name="metric=2", value="5643"), ]))), api_pb2.Trial( name="test-234hs", spec=api_pb2.TrialSpec(objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, objective_metric_name="metric-2", goal=0.9), parameter_assignments=api_pb2.TrialSpec. ParameterAssignments(assignments=[ api_pb2.ParameterAssignment( name="param-1", value="3", ), api_pb2.ParameterAssignment( name="param-2", value="cat2", ), api_pb2.ParameterAssignment( name="param-3", value="6", ), api_pb2.ParameterAssignment( name="param-4", value="4.44", ) ])), status=api_pb2.TrialStatus(observation=api_pb2.Observation( metrics=[ api_pb2.Metric(name="metric=1", value="123"), api_pb2.Metric(name="metric=2", value="3028"), ]))) ] experiment = api_pb2.Experiment( name="test", spec=api_pb2.ExperimentSpec( algorithm=api_pb2.AlgorithmSpec( algorithm_name="bayesianoptimization", algorithm_setting=[ api_pb2.AlgorithmSetting(name="random_state", value="10") ], ), objective=api_pb2.ObjectiveSpec(type=api_pb2.MAXIMIZE, goal=0.9), parameter_specs=api_pb2.ExperimentSpec. ParameterSpecs(parameters=[ api_pb2.ParameterSpec( name="param-1", parameter_type=api_pb2.INT, feasible_space=api_pb2.FeasibleSpace( max="5", min="1", list=[]), ), api_pb2.ParameterSpec(name="param-2", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["cat1", "cat2", "cat3"])), api_pb2.ParameterSpec( name="param-3", parameter_type=api_pb2.DISCRETE, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["3", "2", "6"])), api_pb2.ParameterSpec(name="param-4", parameter_type=api_pb2.DOUBLE, feasible_space=api_pb2.FeasibleSpace( max="5", min="1", list=[])) ]))) request = api_pb2.GetSuggestionsRequest( experiment=experiment, trials=trials, request_number=2, ) get_suggestion = self.test_server.invoke_unary_unary( method_descriptor=( api_pb2.DESCRIPTOR.services_by_name['Suggestion']. methods_by_name['GetSuggestions']), invocation_metadata={}, request=request, timeout=1) response, metadata, code, details = get_suggestion.termination() print(response.parameter_assignments) self.assertEqual(code, grpc.StatusCode.OK) self.assertEqual(2, len(response.parameter_assignments))
def test_get_suggestion(self): experiment = api_pb2.Experiment( name="darts-experiment", spec=api_pb2.ExperimentSpec( algorithm=api_pb2.AlgorithmSpec( algorithm_name="darts", algorithm_setting=[ api_pb2.AlgorithmSetting( name="num_epoch", value="10" ) ], ), objective=api_pb2.ObjectiveSpec( type=api_pb2.MAXIMIZE, objective_metric_name="Best-Genotype" ), parallel_trial_count=1, max_trial_count=1, nas_config=api_pb2.NasConfig( graph_config=api_pb2.GraphConfig( num_layers=3, ), operations=api_pb2.NasConfig.Operations( operation=[ api_pb2.Operation( operation_type="separable_convolution", parameter_specs=api_pb2.Operation.ParameterSpecs( parameters=[ api_pb2.ParameterSpec( name="filter_size", parameter_type=api_pb2.CATEGORICAL, feasible_space=api_pb2.FeasibleSpace( max=None, min=None, list=["3", "5"]) ), ] ) ), ], ) ) ) ) request = api_pb2.GetSuggestionsRequest( experiment=experiment, request_number=1, ) get_suggestion = self.test_server.invoke_unary_unary( method_descriptor=(api_pb2.DESCRIPTOR .services_by_name['Suggestion'] .methods_by_name['GetSuggestions']), invocation_metadata={}, request=request, timeout=100) response, metadata, code, details = get_suggestion.termination() print(response.parameter_assignments) self.assertEqual(code, grpc.StatusCode.OK) self.assertEqual(1, len(response.parameter_assignments)) exp_algorithm_settings = {} for setting in experiment.spec.algorithm.algorithm_setting: exp_algorithm_settings[setting.name] = setting.value exp_num_layers = experiment.spec.nas_config.graph_config.num_layers exp_search_space = ["separable_convolution_3x3", "separable_convolution_5x5"] for pa in response.parameter_assignments[0].assignments: if (pa.name == "algorithm-settings"): algorithm_settings = pa.value.replace("\'", "\"") algorithm_settings = json.loads(algorithm_settings) self.assertDictContainsSubset(exp_algorithm_settings, algorithm_settings) elif (pa.name == "num-layers"): self.assertEqual(exp_num_layers, int(pa.value)) elif (pa.name == "search-space"): search_space = pa.value.replace("\'", "\"") search_space = json.loads(search_space) self.assertEqual(exp_search_space, search_space)