def run_mnist_prediction(prediction_hparams): # DATA datamodule = MNISTDataModule(data_dir=DATA_PATH + '/mnist_') datamodule.prepare_data() # downloads data to given path train_dataloader = datamodule.train_dataloader() val_dataloader = datamodule.val_dataloader() test_dataloader = datamodule.test_dataloader() encoder_model = SimpleConvNet() return run_prediction(prediction_hparams, train_dataloader, val_dataloader, test_dataloader, encoder_model, encoder_out_dim=50)
def run_mnist_dvrl(prediction_hparams, dvrl_hparams): # DATA datamodule = MNISTDataModule(data_dir=DATA_PATH + '/mnist_') datamodule.prepare_data() # downloads data to given path train_dataloader = datamodule.train_dataloader( batch_size=dvrl_hparams.get('outer_batch_size', 32)) val_dataloader = datamodule.val_dataloader( batch_size=dvrl_hparams.get('outer_batch_size', 32)) test_dataloader = datamodule.test_dataloader( batch_size=dvrl_hparams.get('outer_batch_size', 32)) val_split = datamodule.val_split encoder_model = SimpleConvNet() return run_gumbel(dvrl_hparams, prediction_hparams, train_dataloader, val_dataloader, test_dataloader, val_split, encoder_model, encoder_out_dim=50)