def test_amdim(tmpdir): reset_seed() model = AMDIM(data_dir=tmpdir, batch_size=2, online_ft=True, encoder='resnet18') trainer = pl.Trainer(fast_dev_run=True, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) loss = trainer.callback_metrics['loss'] assert loss > 0
def test_amdim(tmpdir): reset_seed() model = AMDIM(data_dir=tmpdir, batch_size=2, online_ft=True, encoder='resnet18') trainer = pl.Trainer(fast_dev_run=True, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) loss = trainer.progress_bar_dict['loss'] assert float(loss) > 0
def test_amdim(tmpdir, datadir): model = AMDIM(data_dir=datadir, batch_size=2, online_ft=True, encoder='resnet18', num_workers=0) trainer = pl.Trainer(fast_dev_run=True, default_root_dir=tmpdir) trainer.fit(model)