def toroidal_shell_integral(n, minval, maxval, eps, benchmark=False): coordvals = np.linspace(minval, maxval, n, dtype=np.float32) delta = (maxval - minval) / (n - 1) # grid spacing X_data = coordvals.reshape(n, 1, 1) Y_data = coordvals.reshape(1, n, 1) Z_data = coordvals.reshape(1, 1, n) X = edsl.Tensor(edsl.LogicalShape(plaidml.DType.FLOAT32, X_data.shape)) Y = edsl.Tensor(edsl.LogicalShape(plaidml.DType.FLOAT32, Y_data.shape)) Z = edsl.Tensor(edsl.LogicalShape(plaidml.DType.FLOAT32, Z_data.shape)) # f-rep of torodial shell f(x, y, z) = (sqrt(x^2 + y^2) - 1)^2 + z^2 + (0.1)^2 F = sq(edsl.sqrt(sq(X) + sq(Y)) - 1.0) + sq(Z) - sq(0.1) # moment of inertia about z axis at each point g(x, y, z) = x^2 + y^2 G = sq(X) + sq(Y) DFDX = partial(F, 'x', delta) DFDY = partial(F, 'y', delta) DFDZ = partial(F, 'z', delta) # chi: occupancy function: 1 inside the region (f<0), 0 outside the region (f>0) DCHIDX = partial_chi(F, 'x', delta) DCHIDY = partial_chi(F, 'y', delta) DCHIDZ = partial_chi(F, 'z', delta) NUMER = DFDX * DCHIDX + DFDY * DCHIDY + DFDZ * DCHIDZ DENOM = edsl.sqrt(sq(DFDX) + sq(DFDY) + sq(DFDZ)) H = edsl.select(DENOM < eps, 0, NUMER / DENOM) O = sum(-G * H) program = edsl.Program('toroidal_shell_integral', [O]) binder = plaidml_exec.Binder(program) executable = binder.compile() def run(): binder.input(X).copy_from_ndarray(X_data) binder.input(Y).copy_from_ndarray(Y_data) binder.input(Z).copy_from_ndarray(Z_data) executable.run() return binder.output(O).as_ndarray() if benchmark: # the first run will compile and run print('compiling...') result = run() # subsequent runs should not include compile time print('running...') ITERATIONS = 100 elapsed = timeit.timeit(run, number=ITERATIONS) print('runtime:', elapsed / ITERATIONS) else: result = run() return result * (delta**3)
def sqrt(x): logger.debug('sqrt(x: {})'.format(x)) return _KerasNode('sqrt', tensor=edsl.sqrt(x.tensor))
def sqrt(x): return _KerasNode('sqrt', tensor=edsl.sqrt(x.tensor))