コード例 #1
0
 def _order_to_tree_topology(order: List[int], pattern: Pattern):
     """
     A helper method for converting a given order to a tree topology.
     """
     tree_topology = TreePlanLeafNode(order[0])
     for i in range(1, len(order)):
         tree_topology = TreePlanBuilder._instantiate_binary_node(
             pattern, tree_topology, TreePlanLeafNode(order[i]))
     return tree_topology
コード例 #2
0
 def __create_nested_structure(nested_operator: PatternStructure):
     """
     This method is a temporal hack, hopefully it will be removed soon.
     # TODO: calculate the evaluation order in the way it should work - using a tree plan builder
     """
     order = list(range(len(nested_operator.args))) if isinstance(nested_operator, CompositeStructure) else [0]
     operator_type = None
     if isinstance(nested_operator, AndOperator):
         operator_type = OperatorTypes.AND
     elif isinstance(nested_operator, SeqOperator):
         operator_type = OperatorTypes.SEQ
     ret = TreePlanLeafNode(order[0])
     for i in range(1, len(order)):
         ret = TreePlanBinaryNode(operator_type, ret, TreePlanLeafNode(order[i]))
     return ret
コード例 #3
0
 def __init_tree_leaves(pattern: Pattern,
                        nested_topologies: List[TreePlanNode] = None,
                        nested_args: List[PatternStructure] = None,
                        nested_cost: List[float] = None):
     """
     Initializes the leaves of the tree plan. If the nested parameters are given, creates nested nodes instead of
     regular leaves where necessary.
     """
     leaves = []
     pattern_positive_args = pattern.get_top_level_structure_args(
         positive_only=True)
     for i, arg in enumerate(pattern_positive_args):
         if nested_topologies is None or nested_topologies[i] is None:
             # the current argument can either be a PrimitiveEventStructure or an UnaryOperator surrounding it
             event_structure = arg if isinstance(
                 arg, PrimitiveEventStructure) else arg.child
             new_leaf = TreePlanLeafNode(i, event_structure.type,
                                         event_structure.name)
         else:
             nested_topology = nested_topologies[i].sub_tree_plan \
                 if isinstance(nested_topologies[i], TreePlanNestedNode) else nested_topologies[i]
             new_leaf = TreePlanNestedNode(i, nested_topology,
                                           nested_args[i], nested_cost[i])
         if isinstance(arg, UnaryStructure):
             new_leaf = TreePlanBuilder._instantiate_unary_node(
                 TreePlanBuilder.__create_dummy_subpattern(pattern, arg),
                 new_leaf)
         leaves.append(new_leaf)
     return leaves
コード例 #4
0
    def _create_tree_topology(self, pattern: Pattern):
        if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
            (selectivity_matrix, arrival_rates) = pattern.statistics
        else:
            raise MissingStatisticsException()

        args_num = len(selectivity_matrix)
        if args_num == 1:
            return [0]

        items = frozenset(range(args_num))
        # Save subsets' optimal topologies, the cost and the left to add items.
        sub_trees = {frozenset({i}): (TreePlanLeafNode(i),
                                      self._get_plan_cost(pattern, TreePlanLeafNode(i)),
                                      items.difference({i}))
                     for i in items}

        # for each subset of size i, find optimal topology for these subsets according to size (i-1) subsets.
        for i in range(2, args_num + 1):
            for tSubset in combinations(items, i):
                subset = frozenset(tSubset)
                disjoint_sets_iter = get_all_disjoint_sets(subset)  # iterator for all disjoint splits of a set.
                # use first option as speculative best.
                set1_, set2_ = next(disjoint_sets_iter)
                tree1_, _, _ = sub_trees[set1_]
                tree2_, _, _ = sub_trees[set2_]
                new_tree_ = TreePlanBuilder._instantiate_binary_node(pattern, tree1_, tree2_)
                new_cost_ = self._get_plan_cost(pattern, new_tree_)
                new_left_ = items.difference({subset})
                sub_trees[subset] = new_tree_, new_cost_, new_left_
                # find the best topology based on previous topologies for smaller subsets.
                for set1, set2 in disjoint_sets_iter:
                    tree1, _, _ = sub_trees[set1]
                    tree2, _, _ = sub_trees[set2]
                    new_tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1, tree2)
                    new_cost = self._get_plan_cost(pattern, new_tree)
                    _, cost, left = sub_trees[subset]
                    # if new subset's topology is better, then update to it.
                    if new_cost < cost:
                        sub_trees[subset] = new_tree, new_cost, left
        return sub_trees[items][0]  # return the best topology (index 0 at tuple) for items - the set of all arguments.
コード例 #5
0
 def build_tree_plan(self, pattern: Pattern, statistics: Dict):
     """
     Creates a tree-based evaluation plan for the given pattern.
     """
     # as of now, the invariant-based method can only work on composite non-nested patterns
     leaves = [
         TreePlanLeafNode(i)
         for i in range(len(pattern.full_structure.args))
     ]
     tree_topology, invariants = self._create_tree_topology(
         pattern, statistics, leaves)
     return TreePlan(tree_topology), invariants
コード例 #6
0
    def _create_tree_topology(self, pattern: Pattern):
        if pattern.statistics_type == StatisticsTypes.SELECTIVITY_MATRIX_AND_ARRIVAL_RATES:
            (selectivity_matrix, arrival_rates) = pattern.statistics
        else:
            raise MissingStatisticsException()

        order = self._get_initial_order(selectivity_matrix, arrival_rates)
        args_num = len(order)
        items = tuple(order)
        suborders = {
            (i,): (TreePlanLeafNode(i), self._get_plan_cost(pattern, TreePlanLeafNode(i)))
            for i in items
        }

        # iterate over suborders' sizes
        for i in range(2, args_num + 1):
            # iterate over suborders of size i
            for j in range(args_num - i + 1):
                # create the suborder (slice) to find its optimum.
                suborder = tuple(order[t] for t in range(j, j + i))
                # use first split of suborder as speculative best.
                order1_, order2_ = suborder[:1], suborder[1:]
                tree1_, _ = suborders[order1_]
                tree2_, _ = suborders[order2_]
                tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1_, tree2_)
                cost = self._get_plan_cost(pattern, tree)
                suborders[suborder] = tree, cost
                # iterate over splits of suborder
                for k in range(2, i):
                    # find the optimal topology of this split, according to optimal topologies of subsplits.
                    order1, order2 = suborder[:k], suborder[k:]
                    tree1, _ = suborders[order1]
                    tree2, _ = suborders[order2]
                    _, prev_cost = suborders[suborder]
                    new_tree = TreePlanBuilder._instantiate_binary_node(pattern, tree1, tree2)
                    new_cost = self._get_plan_cost(pattern, new_tree)
                    if new_cost < prev_cost:
                        suborders[suborder] = new_tree, new_cost
        return suborders[items][0]  # return the topology (index 0 at tuple) of the entire order, indexed to 'items'.
コード例 #7
0
 def _order_to_tree_topology(order: List[int],
                             pattern: Pattern,
                             leaves: List[TreePlanNode] = None):
     """
     A helper method for converting a given order to a tree topology.
     """
     if leaves is None:
         leaves = [TreePlanLeafNode(i) for i in range(max(order) + 1)]
     tree_topology = leaves[order[0]]
     for i in range(1, len(order)):
         tree_topology = TreePlanBuilder._instantiate_binary_node(
             pattern, tree_topology, leaves[order[i]])
     return tree_topology
コード例 #8
0
    def _create_tree_topology(self, pattern: Pattern, statistics: Dict,
                              leaves: List[TreePlanNode]):
        if StatisticsTypes.ARRIVAL_RATES in statistics and \
                StatisticsTypes.SELECTIVITY_MATRIX in statistics and \
                len(statistics) == 2:
            selectivity_matrix = statistics[StatisticsTypes.SELECTIVITY_MATRIX]
            arrival_rates = statistics[StatisticsTypes.ARRIVAL_RATES]
        else:
            raise MissingStatisticsException()

        order = self._get_initial_order(selectivity_matrix, arrival_rates)
        args_num = len(order)
        items = tuple(order)
        suborders = {(i, ): (TreePlanLeafNode(i),
                             self._get_plan_cost(pattern, TreePlanLeafNode(i),
                                                 statistics))
                     for i in items}

        tree_to_second_min_tree_map = {}
        invariants = ZStreamTreeInvariants(self._get_plan_cost)
        all_sub_trees = []

        # iterate over suborders sizes
        for i in range(2, args_num + 1):
            # iterate over suborders of size i
            for j in range(args_num - i + 1):
                # create the suborder (slice) to find its optimum.
                suborder = tuple(order[t] for t in range(j, j + i))
                # use first split of suborder as speculative best.
                order1_, order2_ = suborder[:1], suborder[1:]
                tree1_, _ = suborders[order1_]
                tree2_, _ = suborders[order2_]
                tree = TreePlanBuilder._instantiate_binary_node(
                    pattern, tree1_, tree2_)
                cost = self._get_plan_cost(pattern, tree, statistics)
                suborders[suborder] = tree, cost

                second_prev_cost = cost
                second_min_tree = tree

                # iterate over splits of suborder
                for k in range(2, i):

                    # find the optimal topology of this split, according to optimal topologies of subsplits.
                    order1, order2 = suborder[:k], suborder[k:]
                    tree1, _ = suborders[order1]
                    tree2, _ = suborders[order2]
                    _, prev_cost = suborders[suborder]
                    new_tree = TreePlanBuilder._instantiate_binary_node(
                        pattern, tree1, tree2)
                    new_cost = self._get_plan_cost(pattern, new_tree,
                                                   statistics)
                    if new_cost < prev_cost:
                        second_prev_cost = prev_cost
                        second_min_tree = suborders[suborder][0]

                        suborders[suborder] = new_tree, new_cost

                    elif new_cost < second_prev_cost or second_min_tree == tree:
                        second_prev_cost = new_cost
                        second_min_tree = new_tree

                if i != 2:
                    tree_to_second_min_tree_map[suborders[suborder]
                                                [0]] = second_min_tree

        # Eliminates all trees that are not in best tree from map_tree_to_second_min_tree
        InvariantAwareZStreamTreeBuilder.__get_relevant_sub_trees(
            suborders[items][0], all_sub_trees)

        for tree in all_sub_trees:
            invariants.add(Invariant(tree, tree_to_second_min_tree_map[tree]))

        # return the topology (index 0 at tuple) of the entire order, indexed to 'items'
        return suborders[items][0], invariants