コード例 #1
0
def fitnessfatigue_example(ff_args):
    weeks = 12
    goal = 1.1 * ff_args["initial_p"]
    max_load = 150.0
    min_load = 0.0
    cycle_days = [u.WeekDays.monday, u.WeekDays.tuesday, u.WeekDays.wednesday, u.WeekDays.friday, u.WeekDays.saturday]
    training_days = u.microcycle_days(cycle_days, weeks)
    # training_days = u.filter_weeks(training_days, [3, 7, 11])
    # print(ff_args)
    solution = differential_evolution(
        weeks,
        goal,
        training_days,
        POP_SIZE,
        max_load,
        min_load,
        ff_model.after_plan,
        prequel_plan=[],
        pp_func=u.sort_loads,
        recomb_weight=0.7,
        scale_factor=0.8,
        pop_init_divisor=1,
        **ff_args
    )
    solution_fitness = u.fitness(solution, goal, GOOD_ENOUGH_THRES, ff_model.after_plan, **ff_args)
    perf_after_plan = ff_model.after_plan(solution, **ff_args)
    u.print_ea_result(solution, solution_fitness, perf_after_plan, goal)
コード例 #2
0
def perpot_example(pp_args):
    weeks = 12
    goal = 0.3
    max_load = 1.0
    cycle_days = [
        u.WeekDays.monday, u.WeekDays.tuesday, u.WeekDays.wednesday,
        u.WeekDays.friday, u.WeekDays.saturday
    ]
    training_days = u.microcycle_days(cycle_days, weeks)
    training_days = u.filter_weeks(training_days, [3, 7, 11])
    # pp_args = params.pp_parms8
    print(pp_args)
    solution = differential_evolution(
        weeks,
        goal,
        training_days,
        POP_SIZE,
        max_load,
        pp_model.after_plan,
        # u.sort_loads,
        **pp_args)
    solution_fitness = u.fitness(solution, goal, GOOD_ENOUGH_THRES,
                                 pp_model.after_plan, **pp_args)
    perf_after_plan = pp_model.after_plan(solution, **pp_args)
    u.print_ea_result(solution, solution_fitness, perf_after_plan, goal)
    '''
コード例 #3
0
def fitnessfatigue_example(ff_args):
    weeks = 12
    goal = 1.1 * ff_args['initial_p']
    max_load = 150.0
    min_load = 0.0
    cycle_days = [
        u.WeekDays.monday, u.WeekDays.tuesday, u.WeekDays.wednesday,
        u.WeekDays.friday, u.WeekDays.saturday
    ]
    training_days = u.microcycle_days(cycle_days, weeks)
    # training_days = u.filter_weeks(training_days, [3, 7, 11])
    # print(ff_args)
    solution = differential_evolution(weeks,
                                      goal,
                                      training_days,
                                      POP_SIZE,
                                      max_load,
                                      min_load,
                                      ff_model.after_plan,
                                      prequel_plan=[],
                                      pp_func=u.sort_loads,
                                      recomb_weight=0.7,
                                      scale_factor=0.8,
                                      pop_init_divisor=1,
                                      **ff_args)
    solution_fitness = u.fitness(solution, goal, GOOD_ENOUGH_THRES,
                                 ff_model.after_plan, **ff_args)
    perf_after_plan = ff_model.after_plan(solution, **ff_args)
    u.print_ea_result(solution, solution_fitness, perf_after_plan, goal)
コード例 #4
0
def perpot_example(pp_args):
    weeks = 12
    goal = 0.3
    max_load = 1.0
    cycle_days = [u.WeekDays.monday, u.WeekDays.tuesday, u.WeekDays.wednesday, u.WeekDays.friday, u.WeekDays.saturday]
    training_days = u.microcycle_days(cycle_days, weeks)
    training_days = u.filter_weeks(training_days, [3, 7, 11])
    # pp_args = params.pp_parms8
    print(pp_args)
    solution = differential_evolution(
        weeks,
        goal,
        training_days,
        POP_SIZE,
        max_load,
        pp_model.after_plan,
        # u.sort_loads,
        **pp_args
    )
    solution_fitness = u.fitness(solution, goal, GOOD_ENOUGH_THRES, pp_model.after_plan, **pp_args)
    perf_after_plan = pp_model.after_plan(solution, **pp_args)
    u.print_ea_result(solution, solution_fitness, perf_after_plan, goal)

    """
コード例 #5
0
def differential_evolution(
    weeks,
    goal,
    training_days,
    pop_size,
    max_load,
    min_load,
    model_perf_func,
    prequel_plan=[],  # prepend to solution candidates
    pp_func=None,  # post processing function
    recomb_weight=0.7,
    scale_factor=None,  # None means dithering
    pop_init_divisor=10,
    **model_parameters
):
    t = 0  # generation counter
    fitness_t = [0.0] * pop_size
    fitness_t_minus_1 = [0.0] * pop_size
    local_optima_counter = 0
    pops = [generate_population(weeks, training_days, pop_size, max_load, min_load, pop_init_divisor)]
    if pp_func is not None:
        pops[0] = list(map(pp_func, pops[0]))
    good_enough = False
    run_time = 0
    start_time = int(time.time())
    preq_plan = np.array(prequel_plan)

    print("pop_init_divisor = {}".format(pop_init_divisor))
    while t < 1000 and not good_enough and local_optima_counter < 40:
        pops.append([0] * pop_size)  # preallocate space for pointers
        fitness_t_minus_1 = fitness_t.copy()  # copy last run fitness values

        for i in range(pop_size):
            if scale_factor is None:
                scale_fac = rand_scale_fac()
            else:
                scale_fac = scale_factor
            a_i, b_i, c_i, d_i = np.random.choice(pop_size, 4, False)
            a, b, c, d = pops[t][a_i], pops[t][b_i], pops[t][c_i], pops[t][d_i]
            a_p = de_operator(a, b, c, d, max_load, min_load, recomb_weight, scale_fac)
            if pp_func is not None:
                a_p = pp_func(a_p)
            a_p_fit, a_p_good_enough = u.fitness(
                np.concatenate((preq_plan, a_p)), goal, GOOD_ENOUGH_THRES, model_perf_func, **model_parameters
            )
            a_fit, a_good_enough = u.fitness(
                np.concatenate((preq_plan, a)), goal, GOOD_ENOUGH_THRES, model_perf_func, **model_parameters
            )
            if a_p_fit >= a_fit:
                pops[t + 1][i] = a_p
                fitness_t[i] = a_p_fit
                if a_p_good_enough:
                    good_enough = True
                    pops[t + 1] = pops[t + 1][: i + 1]  # remove superfluous entries
                    fitness_t = fitness_t[: i + 1]  # remove superfluous entries
                    break
            else:
                pops[t + 1][i] = a
                fitness_t[i] = a_fit
                if a_good_enough:
                    good_enough = True
                    pops[t + 1] = pops[t + 1][: i + 1]  # remove superfluous entries
                    fitness_t = fitness_t[: i + 1]  # remove superfluous entries
                    break
        print("gen {}: max fitness {}".format(t, max(fitness_t)))
        t += 1
        if max(fitness_t) == max(fitness_t_minus_1):
            local_optima_counter += 1
        else:
            local_optima_counter = 0
        run_time = int(time.time()) - start_time

    s = sorted(
        pops[-1],
        key=lambda p: u.fitness(
            np.concatenate((preq_plan, p)), goal, GOOD_ENOUGH_THRES, model_perf_func, **model_parameters
        )[0],
    )
    print("run_time: {}".format(run_time))
    print("local_optima_counter: {}".format(local_optima_counter))
    print("good_enough: {}".format(good_enough))
    return s[-1]
コード例 #6
0
def differential_evolution(
        weeks,
        goal,
        training_days,
        pop_size,
        max_load,
        min_load,
        model_perf_func,
        prequel_plan=[],  # prepend to solution candidates
        pp_func=None,  # post processing function
        recomb_weight=0.7,
        scale_factor=None,  # None means dithering
        pop_init_divisor=10,
        **model_parameters):
    t = 0  # generation counter
    fitness_t = [0.0] * pop_size
    fitness_t_minus_1 = [0.0] * pop_size
    local_optima_counter = 0
    pops = [
        generate_population(weeks, training_days, pop_size, max_load, min_load,
                            pop_init_divisor)
    ]
    if pp_func is not None:
        pops[0] = list(map(pp_func, pops[0]))
    good_enough = False
    run_time = 0
    start_time = int(time.time())
    preq_plan = np.array(prequel_plan)

    print('pop_init_divisor = {}'.format(pop_init_divisor))
    while t < 1000 and not good_enough and local_optima_counter < 40:
        pops.append([0] * pop_size)  # preallocate space for pointers
        fitness_t_minus_1 = fitness_t.copy()  # copy last run fitness values

        for i in range(pop_size):
            if scale_factor is None:
                scale_fac = rand_scale_fac()
            else:
                scale_fac = scale_factor
            a_i, b_i, c_i, d_i = np.random.choice(pop_size, 4, False)
            a, b, c, d = pops[t][a_i], pops[t][b_i], pops[t][c_i], pops[t][d_i]
            a_p = de_operator(a, b, c, d, max_load, min_load, recomb_weight,
                              scale_fac)
            if pp_func is not None:
                a_p = pp_func(a_p)
            a_p_fit, a_p_good_enough = u.fitness(
                np.concatenate((preq_plan, a_p)), goal, GOOD_ENOUGH_THRES,
                model_perf_func, **model_parameters)
            a_fit, a_good_enough = u.fitness(np.concatenate(
                (preq_plan, a)), goal, GOOD_ENOUGH_THRES, model_perf_func,
                                             **model_parameters)
            if a_p_fit >= a_fit:
                pops[t + 1][i] = a_p
                fitness_t[i] = a_p_fit
                if a_p_good_enough:
                    good_enough = True
                    pops[t + 1] = pops[t + 1][:i +
                                              1]  # remove superfluous entries
                    fitness_t = fitness_t[:i + 1]  # remove superfluous entries
                    break
            else:
                pops[t + 1][i] = a
                fitness_t[i] = a_fit
                if a_good_enough:
                    good_enough = True
                    pops[t + 1] = pops[t + 1][:i +
                                              1]  # remove superfluous entries
                    fitness_t = fitness_t[:i + 1]  # remove superfluous entries
                    break
        print('gen {}: max fitness {}'.format(t, max(fitness_t)))
        t += 1
        if max(fitness_t) == max(fitness_t_minus_1):
            local_optima_counter += 1
        else:
            local_optima_counter = 0
        run_time = int(time.time()) - start_time

    s = sorted(pops[-1],
               key=lambda p: u.fitness(np.concatenate(
                   (preq_plan, p)), goal, GOOD_ENOUGH_THRES, model_perf_func,
                                       **model_parameters)[0])
    print('run_time: {}'.format(run_time))
    print('local_optima_counter: {}'.format(local_optima_counter))
    print('good_enough: {}'.format(good_enough))
    return s[-1]