コード例 #1
0
    def get_sim_stats_qcl(self,
                          k1,
                          mc_sims,
                          k2=None,
                          recache=False,
                          lmax=None):
        """Returns the sim-average of the input *plancklens.qecl* list QE power spectra average

            Args:
                k1: QE anisotropy key 1
                mc_sims: the simulation indices to average the spectra over
                k2: QE anisotropy key 2 (defaults to k1)

            Returns:
                *plancklens.utils.stats* instance

        """
        if k2 is None: k2 = k1
        if lmax is None: lmax = self.get_lmaxqcl(k1, k2)
        tfname = os.path.join(
            self.lib_dir, 'sim_qcl_stats_%s_%s_%s_%s.pk' %
            (k1, k2, lmax, utils.mchash(mc_sims)))
        if not os.path.exists(tfname) or recache:
            stats_qcl = utils.stats(lmax + 1, docov=False)
            for i, idx in utils.enumerate_progress(
                    mc_sims,
                    label='building sim_stats qcl (k1,k2)=' + str((k1, k2))):
                stats_qcl.add(self.get_sim_qcl(k1, idx, k2=k2, lmax=lmax))
            pk.dump(stats_qcl, open(tfname, 'wb'), protocol=2)
        return pk.load(open(tfname, 'rb'))
コード例 #2
0
ファイル: bandpowers.py プロジェクト: pcampeti/plancklens
    def get_bamc(self):
        """Binned additive MC correction, with crude error bars.

            This compares the reconstruction on the simulations to the FFP10 input lensing spectrum.

            Note:
                the approximate error corrections to the additive MC correction variance follows Appendix C of
                https://arxiv.org/abs/1807.06210, check this for more details on its validity.

        """
        assert self.k1[0] == 'p' and self.k2[
            0] == 'p' and self.ksource == 'p', (self.k1, self.k2, self.ksource)
        ss2 = 2 * self.parfile.qcls_ss.get_sim_stats_qcl(
            self.k1, self.parfile.mc_sims_var, k2=self.k2).mean()
        cl_pred = utils.camb_clfile(
            os.path.join(
                self.cls_path,
                'FFP10_wdipole_lenspotentialCls.dat'))['pp'][:len(ss2)]
        qc_norm = utils.cli(
            self.parfile.qresp_dd.get_response(self.k1, self.ksource) *
            self.parfile.qresp_dd.get_response(self.k2, self.ksource))
        bp_stats = utils.stats(self.nbins)
        bp_n1 = self.get_n1()
        for i, idx in utils.enumerate_progress(self.parfile.mc_sims_var,
                                               label='collecting BP stats'):
            dd = self.parfile.qcls_dd.get_sim_qcl(self.k1, idx, k2=self.k2)
            bp_stats.add(
                self._get_binnedcl(qc_norm * (dd - ss2) - cl_pred) - bp_n1)
        NMF = len(self.parfile.qcls_dd.mc_sims_mf)
        NB = len(self.parfile.mc_sims_var)
        return bp_stats.mean(), bp_stats.sigmas_on_mean() * np.sqrt(
            (1. + 1. + 2. / NMF + 2 * NB / (float(NMF * NMF))))
コード例 #3
0
ファイル: bandpowers.py プロジェクト: pcampeti/plancklens
    def get_mcn0_cov(self, mc_sims_dd=None):
        """Covariance matrix obtained from the realization-independent debiaser.

        """
        if mc_sims_dd is None: mc_sims_dd = self.parfile.mc_sims_var
        mcn0_cov = utils.stats(self.nbins)
        qc_norm = utils.cli(
            self.parfile.qresp_dd.get_response(self.k1, self.ksource) *
            self.parfile.qresp_dd.get_response(self.k2, self.ksource))
        for i, idx in utils.enumerate_progress(mc_sims_dd):
            dd = self.parfile.qcls_dd.get_sim_qcl(self.k1, idx, k2=self.k2)
            mcn0_cov.add(self._get_binnedcl(qc_norm * dd))
        return mcn0_cov.cov()
コード例 #4
0
ファイル: bandpowers.py プロジェクト: pcampeti/plancklens
    def get_nhl_cov(self, mc_sims_dd=None):
        """Covariance matrix obtained from the semi-analytical N0 debiaser.

        """
        if mc_sims_dd is None: mc_sims_dd = self.parfile.mc_sims_var
        nhl_cov = utils.stats(self.nbins)
        qc_norm = utils.cli(
            self.parfile.qresp_dd.get_response(self.k1, self.ksource) *
            self.parfile.qresp_dd.get_response(self.k2, self.ksource))
        for i, idx in utils.enumerate_progress(mc_sims_dd):
            dd = self.parfile.qcls_dd.get_sim_qcl(self.k1, idx, k2=self.k2)
            nhl_cov.add(
                self._get_binnedcl(qc_norm *
                                   (dd - self.parfile.nhl_dd.get_sim_nhl(
                                       int(idx), self.k1, self.k2))))
        return nhl_cov.cov()
コード例 #5
0
ファイル: bandpowers.py プロジェクト: markm42/plancklens
    def get_ampl_x_input(self, mc_sims=None):
        """Returns cross-correlation of phi-maps to input lensing maps.

            Uses qlms_x_i library of parfile

        """
        qlmi = self.parfile.qlms_x_in
        if mc_sims is None:
            mc_sims = np.unique(
                np.concatenate(
                    [self.parfile.mc_sims_var, self.parfile.mc_sims_bias]))
        xin = utils.stats(self.nbins)
        qnorm = utils.cli(
            self.parfile.qresp_dd.get_response(self.k1, self.ksource))
        for i, idx in utils.enumerate_progress(mc_sims):
            qi = qlmi.get_sim_qcl(self.k1, idx)
            xin.add(self._get_binnedcl(qnorm * qi) / self.fid_bandpowers)
        return xin