def evaluate(options): start_time_1 = time.time() config = InferenceConfig(options) config.FITTING_TYPE = options.numAnchorPlanes if options.dataset == '': dataset = PlaneDataset(options, config, split='test', random=False, load_semantics=False) elif options.dataset == 'occlusion': config_dataset = copy.deepcopy(config) config_dataset.OCCLUSION = False dataset = PlaneDataset(options, config_dataset, split='test', random=False, load_semantics=True) elif 'nyu' in options.dataset: dataset = NYUDataset(options, config, split='val', random=False) elif options.dataset == 'synthia': dataset = SynthiaDataset(options, config, split='val', random=False) elif options.dataset == 'kitti': camera = np.zeros(6) camera[0] = 9.842439e+02 camera[1] = 9.808141e+02 camera[2] = 6.900000e+02 camera[3] = 2.331966e+02 camera[4] = 1242 camera[5] = 375 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/KITTI/scene_3/*.png'), camera=camera) elif options.dataset == '7scene': camera = np.zeros(6) camera[0] = 519 camera[1] = 519 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/SevenScene/scene_3/*.png'), camera=camera) elif options.dataset == 'tanktemple': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/TankAndTemple/scene_4/*.jpg'), camera=camera) elif options.dataset == 'make3d': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/Make3D/*.jpg'), camera=camera) elif options.dataset == 'popup': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/PhotoPopup/*.jpg'), camera=camera) elif options.dataset == 'cross' or options.dataset == 'cross_2': image_list = [ 'test/cross_dataset/' + str(c) + '_image.png' for c in range(12) ] cameras = [] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 for c in range(4): cameras.append(camera) continue camera_kitti = np.zeros(6) camera_kitti[0] = 9.842439e+02 camera_kitti[1] = 9.808141e+02 camera_kitti[2] = 6.900000e+02 camera_kitti[3] = 2.331966e+02 camera_kitti[4] = 1242.0 camera_kitti[5] = 375.0 for c in range(2): cameras.append(camera_kitti) continue camera_synthia = np.zeros(6) camera_synthia[0] = 133.185088 camera_synthia[1] = 134.587036 camera_synthia[2] = 160.000000 camera_synthia[3] = 96.000000 camera_synthia[4] = 320 camera_synthia[5] = 192 for c in range(2): cameras.append(camera_synthia) continue camera_tanktemple = np.zeros(6) camera_tanktemple[0] = 0.7 camera_tanktemple[1] = 0.7 camera_tanktemple[2] = 0.5 camera_tanktemple[3] = 0.5 camera_tanktemple[4] = 1 camera_tanktemple[5] = 1 for c in range(2): cameras.append(camera_tanktemple) continue for c in range(2): cameras.append(camera) continue dataset = InferenceDataset(options, config, image_list=image_list, camera=cameras) elif options.dataset == 'selected': image_list = glob.glob('test/selected_images/*_image_0.png') image_list = [ filename for filename in image_list if '63_image' not in filename and '77_image' not in filename ] + [ filename for filename in image_list if '63_image' in filename or '77_image' in filename ] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) elif options.dataset == 'comparison': image_list = [ 'test/comparison/' + str(index) + '_image_0.png' for index in [65, 11, 24] ] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) elif 'inference' in options.dataset: image_list = glob.glob(options.customDataFolder + '/*.png') + glob.glob(options.customDataFolder + '/*.jpg') if os.path.exists(options.customDataFolder + '/camera.txt'): camera = np.zeros(6) with open(options.customDataFolder + '/camera.txt', 'r') as f: for line in f: values = [ float(token.strip()) for token in line.split(' ') if token.strip() != '' ] for c in range(6): camera[c] = values[c] continue break pass else: camera = [ filename.replace('.png', '.txt').replace('.jpg', '.txt') for filename in image_list ] pass dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) pass print('the number of images', len(dataset)) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1) epoch_losses = [] data_iterator = tqdm(dataloader, total=len(dataset)) specified_suffix = options.suffix with torch.no_grad(): detectors = [] for method in options.methods: if method == 'w': options.suffix = 'pair_' + specified_suffix if specified_suffix != '' else 'pair' detectors.append(('warping', PlaneRCNNDetector(options, config, modelType='pair'))) elif method == 'b': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('basic', PlaneRCNNDetector(options, config, modelType='pair'))) elif method == 'o': options.suffix = 'occlusion_' + specified_suffix if specified_suffix != '' else 'occlusion' detectors.append(('occlusion', PlaneRCNNDetector(options, config, modelType='occlusion'))) elif method == 'p': detectors.append( ('planenet', PlaneNetDetector(options, config))) elif method == 'e': detectors.append( ('planerecover', PlaneRecoverDetector(options, config))) elif method == 't': if 'gt' in options.suffix: detectors.append( ('manhattan_gt', TraditionalDetector(options, config, 'manhattan_gt'))) else: detectors.append( ('manhattan_pred', TraditionalDetector(options, config, 'manhattan_pred'))) pass elif method == 'n': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('non_planar', DepthDetector(options, config, modelType='np'))) elif method == 'r': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('refine', PlaneRCNNDetector(options, config, modelType='refine'))) elif method == 's': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append( ('refine_single', PlaneRCNNDetector(options, config, modelType='refine_single'))) elif method == 'f': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('final', PlaneRCNNDetector(options, config, modelType='final'))) pass continue pass if not options.debug: for method_name in [detector[0] for detector in detectors]: os.system('rm ' + options.test_dir + '/*_' + method_name + '.png') continue pass all_statistics = [] for name, detector in detectors: statistics = [[], [], [], []] for sampleIndex, sample in enumerate(data_iterator): if options.testingIndex >= 0 and sampleIndex != options.testingIndex: if sampleIndex > options.testingIndex: break continue input_pair = [] camera = sample[30][0].cuda() for indexOffset in [ 0, ]: images, image_metas, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, gt_parameters, gt_depth, extrinsics, planes, gt_segmentation = sample[ indexOffset + 0].cuda(), sample[indexOffset + 1].numpy(), sample[ indexOffset + 2].cuda(), sample[indexOffset + 3].cuda(), sample[ indexOffset + 4].cuda(), sample[indexOffset + 5].cuda(), sample[ indexOffset + 6].cuda(), sample[indexOffset + 7].cuda( ), sample[indexOffset + 8].cuda(), sample[ indexOffset + 9].cuda(), sample[ indexOffset + 10].cuda(), sample[indexOffset + 11].cuda() masks = ( gt_segmentation == torch.arange(gt_segmentation.max() + 1).cuda().view(-1, 1, 1)).float() input_pair.append({ 'image': images, 'depth': gt_depth, 'bbox': gt_boxes, 'extrinsics': extrinsics, 'segmentation': gt_segmentation, 'camera': camera, 'plane': planes[0], 'masks': masks, 'mask': gt_masks }) continue if sampleIndex >= options.numTestingImages: break with torch.no_grad(): detection_pair = detector.detect(sample) pass if options.dataset == 'rob': depth = detection_pair[0]['depth'].squeeze().detach().cpu( ).numpy() os.system('rm ' + image_list[sampleIndex].replace('color', 'depth')) depth_rounded = np.round(depth * 256) depth_rounded[np.logical_or(depth_rounded < 0, depth_rounded >= 256 * 256)] = 0 cv2.imwrite( image_list[sampleIndex].replace('color', 'depth').replace( 'jpg', 'png'), depth_rounded.astype(np.uint16)) continue if 'inference' not in options.dataset: for c in range(len(input_pair)): evaluateBatchDetection( options, config, input_pair[c], detection_pair[c], statistics=statistics, printInfo=options.debug, evaluate_plane=options.dataset == '') continue else: for c in range(len(detection_pair)): np.save( options.test_dir + '/' + str(sampleIndex % 500) + '_plane_parameters_' + str(c) + '.npy', detection_pair[c]['detection'][:, 6:9]) np.save( options.test_dir + '/' + str(sampleIndex % 500) + '_plane_masks_' + str(c) + '.npy', detection_pair[c]['masks'][:, 80:560]) continue pass if sampleIndex < 30 or options.debug or options.dataset != '': visualizeBatchPair(options, config, input_pair, detection_pair, indexOffset=sampleIndex % 500, suffix='_' + name + options.modelType, write_ply=options.testingIndex >= 0, write_new_view=options.testingIndex >= 0 and 'occlusion' in options.suffix) pass if sampleIndex >= options.numTestingImages: break continue if 'inference' not in options.dataset: options.keyname = name printStatisticsDetection(options, statistics) all_statistics.append(statistics) pass continue if 'inference' not in options.dataset: if options.debug and len(detectors) > 1: all_statistics = np.concatenate([ np.arange(len(all_statistics[0][0])).reshape((-1, 1)), ] + [np.array(statistics[3]) for statistics in all_statistics], axis=-1) print(all_statistics.astype(np.int32)) pass if options.testingIndex == -1: np.save('logs/all_statistics.npy', all_statistics) pass pass info = np.array([1.82e+03, 0.00e+00, 1.63e+03, 0.00e+00,\ 0.00e+00, 1.82e+03, 1.22e+03, 0.00e+00, 0.00e+00, 0.00e+00, \ 1.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 1.00e+00, 3.26e+03, 2.45e+03,\ 1.00e+03,5.00e+00]) image = cv2.imread( "test/inference_debug/0_segmentation_0_final.png") #x,x,3 depth = cv2.imread("test/inference_debug/0_depth_0_final_ori.png", 0) #x,x segmentation = cv2.imread( "test/inference_debug/0_segmentation_0_final.png", 0) #change it depth_final = cv2.imread( "test/inference_debug/0_depth_0_final_ori.png") #x,x planes = np.load("test/inference_debug/0_plane_parameters_0.npy" ) #change if its not working original = cv2.imread("demostore/phsample.png") print(original.shape) print(depth_final.shape) print(image.shape) image_c = np.concatenate((original, depth_final, image), axis=1) cv2.imwrite("output.png", image_c) # folder = "genrate_3dmodel/predict3dfol" index = 0 image_c_written = cv2.imread("output.png") cv2.imshow("output", image_c_written) cv2.waitKey(0) cv2.destroyAllWindows() print("segmentation time through model done in %s seconds " % (time.time() - start_time_1)) #predict3D(folder, index, image, depth, segmentation, planes, info) #print("3d model time through model done in %s seconds "% (time.time() - start_time_1)) filename = 'test/inference_debug/0_model_0_final.ply' print(filename) mesh = pv.read(filename) cpos = mesh.plot() plotter = pv.Plotter(off_screen=True) plotter.add_mesh(mesh) plotter.show(screenshot="myscreenshot.png") return
class PlaneRecoverDetector(): def __init__(self, options, config, checkpoint_dir=''): self.options = options self.config = config sys.path.append('../../existing_methods/') from planerecover_ori.inference import PlaneRecoverDetector self.detector = PlaneRecoverDetector() return def detect(self, sample): detection_pair = [] camera = sample[30][0].cuda() for indexOffset in [ 0, ]: images, image_metas, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, gt_parameters, gt_depth, extrinsics, planes, gt_segmentation = sample[ indexOffset + 0].cuda(), sample[indexOffset + 1].numpy(), sample[ indexOffset + 2].cuda(), sample[indexOffset + 3].cuda(), sample[ indexOffset + 4].cuda(), sample[indexOffset + 5].cuda(), sample[ indexOffset + 6].cuda(), sample[indexOffset + 7].cuda(), sample[ indexOffset + 8].cuda(), sample[indexOffset + 9].cuda( ), sample[indexOffset + 10].cuda(), sample[indexOffset + 11].cuda() image = (images[0].detach().cpu().numpy().transpose( (1, 2, 0)) + self.config.MEAN_PIXEL)[80:560] pred_dict = self.detector.detect(image) segmentation = pred_dict['segmentation'] segmentation = np.concatenate([ np.full( (80, 640), fill_value=-1, dtype=np.int32), segmentation, np.full((80, 640), fill_value=-1, dtype=np.int32) ], axis=0) planes = pred_dict['plane'] masks = (segmentation == np.arange(len(planes), dtype=np.int32).reshape( (-1, 1, 1))).astype(np.float32) detections = np.concatenate( [np.ones((len(planes), 4)), np.ones((len(planes), 2)), planes], axis=-1) detections = torch.from_numpy(detections).float().cuda() masks = torch.from_numpy(masks).float().cuda() XYZ_pred, detection_mask, plane_XYZ = calcXYZModule( self.config, camera, detections, masks, torch.zeros((1, 640, 640)).cuda(), return_individual=True) depth = XYZ_pred[1:2] print(planes) print(np.unique(segmentation)) for mask_index, mask in enumerate(masks.detach().cpu().numpy()): cv2.imwrite('test/mask_' + str(mask_index) + '.png', drawMaskImage(mask)) continue detection_pair.append({ 'depth': depth, 'mask': masks.sum(0, keepdim=True), 'masks': masks, 'detection': detections }) continue return detection_pair