コード例 #1
0
def one_planner(config, size):
    print("size=" + str(size))
    agent_pos, grid, idle_goals, jobs = config['params']
    agent_pos = agent_pos[0:size]
    jobs = jobs[0:size]
    if 'milp' in config:
        print("milp")
        from planner.milp.milp import plan_milp
        res_agent_job, res_paths = plan_milp(agent_pos, jobs, grid, config)
    elif 'cobra' in config:
        print("cobra")
        from planner.cobra.funwithsnakes import plan_cobra
        res_agent_job, res_paths = plan_cobra(agent_pos, jobs, grid, config)
    elif 'greedy' in config:
        print("greedy")
        from planner.greedy.greedy import plan_greedy
        res_agent_job, res_paths = plan_greedy(agent_pos, jobs, grid, config)
    else:
        res_agent_job, res_agent_idle, res_paths = plan(
            agent_pos, jobs, [], idle_goals, grid, config
        )
    print(res_agent_job)

    if is_cch():
        fig = plt.figure()
        ax1 = fig.add_subplot(121)
        plot_inputs(ax1, agent_pos, [], jobs, grid)
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax2, [], res_paths, res_agent_job, agent_pos, grid, [], jobs)
        plt.show()

    return get_costs(res_paths, jobs, res_agent_job, True)
コード例 #2
0
def test_read_map(fname='planner/cobra/test.path', plot=False):
    print("cwd: " + str(os.getcwd()))
    grid = np.zeros([10, 10, 100])
    paths = read_path_file(fname, grid)
    if plot:
        plot_results([], paths, [], [], plt.figure(), grid, [], [])
    assert len(paths) == 3, "Not all agents have paths"
    assert len(paths[0][0]) == 30, "No full paths"
コード例 #3
0
def test_cobra_simple(plot=False):
    grid = np.zeros([5, 5, 30])
    res_agent_job, res_paths = plan_cobra([(1, 1), (2, 2)],
                                          [((3, 3), (1, 4), 0),
                                           ((4, 1), (0, 0), 0)], grid,
                                          generate_config())
    if plot:
        plot_results([], res_paths, [], [], plt.figure(), grid, [], [])
    assert res_agent_job, "No result"
    assert res_paths, "No result"
コード例 #4
0
ファイル: eval_scenarios.py プロジェクト: wuyou33/miriam
def eval(_map, agent_pos, jobs, fname, display=False, finished_blocking=True):
    from planner.milp.milp import plan_milp
    grid = np.repeat(_map[:, ::2, np.newaxis], 100, axis=2)

    config = generate_config()
    config['filename_pathsave'] = fname
    config['finished_agents_block'] = finished_blocking

    print("Problem:")
    print(str(jobs))
    print(str(agent_pos))
    mapstr = get_map_str(grid)
    print(mapstr)

    print("TCBS")
    res_agent_job, res_agent_idle, res_paths = plan(agent_pos,
                                                    jobs, [], [],
                                                    grid,
                                                    config,
                                                    plot=False)
    print("agent_job: " + str(res_agent_job))
    print("paths: " + str(res_paths))
    costs_opt = get_costs(res_paths, jobs, res_agent_job, display)

    print("MINLP")
    minlp_res_agent_job, minlp_res_paths = plan_milp(agent_pos,
                                                     jobs,
                                                     grid,
                                                     config,
                                                     plot=False)
    print("agent_job: " + str(minlp_res_agent_job))
    print("paths: " + str(minlp_res_paths))
    costs_minlp = get_costs(minlp_res_paths, jobs, minlp_res_agent_job,
                            display)

    # MINLP VS PLAN
    if display:
        fig = plt.figure()
        ax1 = fig.add_subplot(121, projection='3d')
        ax1.set_title("Solution Optimal")
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax1, [], res_paths, res_agent_job, agent_pos, grid, [],
                     jobs, "Optimal")
        plot_results(ax2, [], minlp_res_paths, minlp_res_agent_job, agent_pos,
                     grid, [], jobs, "Separate")
        plt.show()

    print("TCBS (results again for comparison)")
    print("agent_job: " + str(res_agent_job))
    print("paths: " + str(res_paths))
    costs_tcbs = get_costs(res_paths, jobs, res_agent_job, display)

    return costs_tcbs, costs_minlp
コード例 #5
0
def test_cobra_random(plot=False):
    agent_pos, grid, idle_goals, jobs = get_data_random(seed=1,
                                                        map_res=8,
                                                        map_fill_perc=20,
                                                        agent_n=3,
                                                        job_n=3,
                                                        idle_goals_n=0)
    res_agent_job, res_paths = plan_cobra(agent_pos, jobs, grid,
                                          generate_config())
    print(res_agent_job)
    all_alloc = reduce(lambda a, b: a + b, res_agent_job, tuple())
    jobs_is = list(range(len(jobs)))
    for i_j in all_alloc:
        jobs_is.remove(i_j)
    assert not jobs_is, "Not all jobs allocated"
    if plot:
        fig = plt.figure()
        ax = fig.add_subplot(121)
        plot_inputs(ax, agent_pos, idle_goals, jobs, grid)
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax2, [], res_paths, res_agent_job, agent_pos, grid, [],
                     jobs)
        plt.show()
コード例 #6
0
from planner.eval.display import plot_results

grid = np.zeros([10, 10, 51])
grid[4, 1:9, :] = -1


def pathplan(agent_pos, jobs):
    start_time = datetime.datetime.now()
    # This misuses the cbsext planner as cbs only planner by fixing the assignment
    res_agent_job, res_agent_idle, res_paths = plan_cbsext(
        agent_pos,
        jobs, [], [],
        grid,
        plot=False,
        filename='pathplanning_only.pkl',
        pathplanning_only_assignment=[(0, ), (1, ), (2, )])
    print("computation time:",
          (datetime.datetime.now() - start_time).total_seconds(), "s")
    return res_paths


# input 1
agent_pos = [(1, 1), (2, 1), (3, 1)]  # three agents
jobs = [((1, 7), (9, 1), 0), ((1, 8), (8, 1), 0),
        ((9, 8), (4, 2), 0)]  # three jobs

paths = pathplan(agent_pos, jobs)
for p in paths:
    print(p)
plot_results([], paths, [], agent_pos, plt.figure(), grid, [], jobs)
コード例 #7
0
def plan(agent_pos, jobs, alloc_jobs, idle_goals, grid,
         config = {}, plot = False, pathplanning_only_assignment=False):
    """
    Main entry point for planner

    Args:
      agent_pos: agent poses
      jobs: jobs to plan for (((s_x, s_y), (g_x, g_y), time), ((s_x ...), ..., time), ...)
        where time might be negative value if job is waiting
      alloc_jobs: preallocation of agent to a job (i.e. will travel to its goal)
      idle_goals: idle goals to consider (((g_x, g_y), (t_mu, t_std)), ...)
      grid: the map (2D-space + time)
      plot: whether to plot conditions and results or not
      filename: filename to save / read path_save (set to False to not do this)
      agent_pos: list: 
      jobs: list: 
      alloc_jobs: list: 
      idle_goals: list: 
      grid: np.array: 
      plot: bool:  (Default value = False)
      filename: str:  (Default value = 'path_save.pkl')
      pathplanning_only_assignment: bool: do the pathplanning only (this assumes each job to the same index agent)

    Returns:
      : tuple of tuples of agent -> job allocations, agent -> idle goal allocations and blocked map areas

    """

    if not config:
        config = generate_config()  # default config
    filename = config['filename_pathsave']
    global _config
    _config = config

    # load path_save
    if filename:  # TODO: check if file was created on same map
        load_paths(filename)

    pool = alloc_threads()
    alloc_threads()
    agent_job = []
    _agent_idle = []
    if _config['number_nearest'] != 0:
        global _distances
        filename = pre_calc_paths(jobs, idle_goals, grid, filename)
        _distances = pre_calc_distances(agent_pos, jobs, idle_goals, grid, filename)

    agent_pos_test = set()
    for a in agent_pos:
        # init agent_job allocation
        agent_job.append(tuple())
        _agent_idle.append(tuple())
        # check for duplicate agents
        assert a not in agent_pos_test, "Duplicate agent poses"
        agent_pos_test.add(a)

    if pathplanning_only_assignment:
        logging.info("Pathplanning only!")
        agent_job = pathplanning_only_assignment
        # for agent in range(len(agent_job)):
        #     if len(agent_job[agent]) == 0:  # no assignment
        #         new_job = ((0, 0), agent_pos[agent], 0)  # fake job
        #         jobs.append(
        #             new_job
        #         )
        #         alloc_jobs.append(
        #             (agent, jobs.index(new_job))
        #         )

    for aj in alloc_jobs:
        agent_job[aj[0]] = (aj[1],)

    agent_job = tuple(agent_job)
    _agent_idle = tuple(_agent_idle)

    # making jobs unique
    jobs = make_unique(jobs)

    blocked = ()
    condition = comp2condition(agent_pos, jobs, alloc_jobs, idle_goals, grid)

    # planning!
    (agent_job, _agent_idle, blocked
     ) = astar_base(start=comp2state(agent_job, _agent_idle, blocked),
                    condition=condition,
                    goal_test=goal_test,
                    get_children=get_children,
                    heuristic=heuristic,
                    cost=cost)

    _paths = get_paths(condition, comp2state(agent_job, _agent_idle, blocked))

    # save path_save
    if filename:
        save_paths(filename)

    if plot:
        fig = plt.figure()
        ax1 = fig.add_subplot(121)
        plot_inputs(ax1, agent_pos, idle_goals, jobs, grid)
        ax2 = fig.add_subplot(122, projection='3d')
        plot_results(ax2, _agent_idle, _paths, agent_job, agent_pos, grid, idle_goals, jobs)
        plt.show()

    pool.close()
    pool.terminate()
    pool.join()

    return agent_job, _agent_idle, _paths
コード例 #8
0
import numpy as np

from tools import load_map

from planner.greedy.greedy import plan_greedy
from planner.eval.display import plot_inputs, plot_results

_map = load_map('../map2.png')
_map = _map[:, ::2]
grid = np.repeat(_map[:, :, np.newaxis], 100, axis=2)

# input
agent_pos = [(0, 0), (1, 0), (2, 0)]
jobs = [((0, 8), (0, 2), 0),
        ((1, 8), (2, 4), 0),
        ((2, 8), (4, 8), 0),
        ((7, 6), (3, 8), 0),
        ((8, 7), (8, 2), 0),
        ((3, 4), (5, 8), 0)]
idle_goals = []

fig = plot_inputs(agent_pos, idle_goals, jobs, grid, show=False)

(res_agent_job, res_paths) = plan_greedy(agent_pos, jobs, grid, 'greedy.pkl')

plot_results([], res_paths, res_agent_job, agent_pos, fig, grid, idle_goals, jobs)
コード例 #9
0
ファイル: random_figure.py プロジェクト: sitebots-com/miriam
                         job_n=4,
                         idle_goals_n=0)
agent_pos, grid, idle_goals, jobs = params

mapstr = get_map_str(grid)
maphash = str(hashlib.md5(mapstr.encode('utf-8')).hexdigest())[:8]
fname = "planner/eval/cache/" + str(maphash) + '.pkl'  # unique filename based on map

config = generate_config()
config['finished_agents_block'] = True
config['filename_pathsave'] = fname

tcbs_agent_job, tcbs_agent_idle, tcbs_paths = plan(agent_pos, jobs, [], [], grid, config, plot=False)
f = plt.figure()
ax0= f.add_subplot(111)
plot_results(ax0, tcbs_agent_idle, tcbs_paths, tcbs_agent_job, agent_pos, grid, [], jobs, "tcbs")

milp_agent_job, milp_agent_idle, milp_paths = plan_milp(agent_pos, jobs, [], [], grid, config, plot=False)
f1 = plt.figure()
ax1= f1.add_subplot(111)
plot_results(ax1, milp_agent_idle, milp_paths, milp_agent_job, agent_pos, grid, [], jobs, "milp")

print(str((tcbs_paths, tcbs_agent_job, milp_paths, milp_agent_job, agent_pos, jobs)))

params = {'legend.fontsize': 'small'}
plt.rcParams.update(params)

f = plt.figure()
ax1 = f.add_subplot(111)
f.set_size_inches(4, 4)
plot_inputs(ax1, agent_pos, [], jobs, grid, title='')