コード例 #1
0
def calculation(image, img_path):

    PIL_image = Image.fromarray(np.uint8(image)).convert('RGB')
    invert_im = ImageOps.invert(PIL_image)  # invert image (so that white is 0)
    imageBox = invert_im.getbbox()
    cropped = PIL_image.crop(imageBox)
    image = np.asanyarray(cropped)

    s = pcv.rgb2gray_hsv(rgb_img=image, channel='s')
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=150,
                                    max_value=255,
                                    object_type='light')
    area = get_area(s_thresh, s_thresh.shape[0])
    output_path_area = os.path.dirname(img_path) + "/" + os.path.basename(
        img_path) + "_area.jpg"
    imsave(output_path_area, s_thresh)

    img2 = np.copy(image)
    img2[s_thresh == 0] = 0
    health = get_area(img2[:, :, 1], s_thresh.shape[0])
    output_path_health = os.path.dirname(img_path) + "/" + os.path.basename(
        img_path) + "_health.jpg"
    imsave(output_path_health, img2[:, :, 1])

    results = {"healthy_size": health, "size": area}

    return (results)
コード例 #2
0
ファイル: main.py プロジェクト: ch-tseng/plant_ai_Taichun
def plant_cv(img):
    counter = 0
    debug = None

    counter, s = pcv.rgb2gray_hsv(img, 's', counter, debug)
    counter, s_thresh = pcv.binary_threshold(s, 145, 255, 'light', counter,
                                             debug)
    counter, s_mblur = pcv.median_blur(s_thresh, 5, counter, debug)

    # Convert RGB to LAB and extract the Blue channel
    counter, b = pcv.rgb2gray_lab(img, 'b', counter, debug)

    # Threshold the blue image
    counter, b_thresh = pcv.binary_threshold(b, 145, 255, 'light', counter,
                                             debug)
    counter, b_cnt = pcv.binary_threshold(b, 145, 255, 'light', counter, debug)
    # Join the thresholded saturation and blue-yellow images
    counter, bs = pcv.logical_or(s_mblur, b_cnt, counter, debug)
    counter, masked = pcv.apply_mask(img, bs, 'white', counter, debug)

    #----------------------------------------
    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    counter, masked_a = pcv.rgb2gray_lab(masked, 'a', counter, debug)
    counter, masked_b = pcv.rgb2gray_lab(masked, 'b', counter, debug)

    # Threshold the green-magenta and blue images
    counter, maskeda_thresh = pcv.binary_threshold(masked_a, 115, 255, 'dark',
                                                   counter, debug)
    counter, maskeda_thresh1 = pcv.binary_threshold(masked_a, 135, 255,
                                                    'light', counter, debug)
    counter, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light',
                                                   counter, debug)

    # Join the thresholded saturation and blue-yellow images (OR)
    counter, ab1 = pcv.logical_or(maskeda_thresh, maskedb_thresh, counter,
                                  debug)
    counter, ab = pcv.logical_or(maskeda_thresh1, ab1, counter, debug)
    counter, ab_cnt = pcv.logical_or(maskeda_thresh1, ab1, counter, debug)

    # Fill small objects
    counter, ab_fill = pcv.fill(ab, ab_cnt, 200, counter, debug)

    # Apply mask (for vis images, mask_color=white)
    counter, masked2 = pcv.apply_mask(masked, ab_fill, 'white', counter, debug)

    zeros = np.zeros(masked2.shape[:2], dtype="uint8")
    merged = cv2.merge([zeros, ab_fill, zeros])

    return merged, masked2
コード例 #3
0
def generate_plant_mask_new(input_image):
    '''
    Generate a mask which segments the plant out in the input image

    Ref: https://plantcv.readthedocs.io/en/latest/vis_tutorial/

    Args:
        input_image: the input image
    Returns:
        mask: boolean numpy array as the same size of the input image which segments the plant
    '''

    # Get the saturation channel
    # hsv_image = rgb2hsv(input_image)
    # s = hsv_image[:,:,1]
    s = pcv.rgb2gray_hsv(rgb_img=input_image, channel='s')

    # threshold the saturation image
    s_thresh = s > 130

    # perform blur on the thresholding
    # s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=15)

    # extract the LAb channels and theshold them
    b = pcv.rgb2gray_lab(rgb_img=input_image, channel='b')
    a = pcv.rgb2gray_lab(rgb_img=input_image, channel='a')

    a_thresh = a <= 120
    b_thresh = b >= 105

    lab_mask = np.logical_and(a_thresh, b_thresh)

    lab_cnt = pcv.median_blur(gray_img=lab_mask, ksize=15)

    # join the two thresholdes mask
    bs = np.logical_and(s_cnt, lab_cnt)

    # filling small holes
    res = np.ones(bs.shape, dtype=np.uint8) * 255
    res[bs] = 0
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
    res = cv2.morphologyEx(res, cv2.MORPH_OPEN, kernel)

    res = res == 0

    return res
コード例 #4
0
def read_true_positive(true_positive_file):
    class args:
        #image = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\0214_2018-03-07 08.55 - 26_true_positive.png"
        image = true_positive_file
        outdir = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\output"
        debug = "None"
        result = "results.txt"

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    img, path, filename = pcv.readimage(filename=args.image, mode='rgb')

    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    mask, masked_image = pcv.threshold.custom_range(rgb_img=s,
                                                    lower_thresh=[10],
                                                    upper_thresh=[255],
                                                    channel='gray')
    masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white')
    #new_im = Image.fromarray(mask)
    #name = "positive_test.png"
    #Recognizing objects
    id_objects, obj_hierarchy = pcv.find_objects(masked, mask)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked,
                                            x=0,
                                            y=0,
                                            h=960,
                                            w=1280)  # Currently hardcoded
    with HiddenPrints():
        roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
            img=img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type=roi_type)

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    #new_im.save(name)
    return (mask)
コード例 #5
0
def plot_hotspots(directory, filename):

    # Read image
    in_full_path = os.path.join(directory, filename)
    outfile = 'Hotspot' + filename
    out_full_path = os.path.join(directory, outfile)

    img, path, filename = pcv.readimage(in_full_path, mode="rgb")

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=85,
                                    max_value=255,
                                    object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    edge = cv2.Canny(s_mblur, 60, 180)
    fig, ax = plt.subplots(1, figsize=(12, 8))
    plt.imshow(edge, cmap='Greys')

    contours, hierarchy = cv2.findContours(edge.copy(), cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_NONE)[-2:]
    centroids = []
    contours = sorted(contours, key=cv2.contourArea, reverse=True)
    for i, cnt in enumerate(contours):
        if (cv2.contourArea(cnt) > 10):
            moment = cv2.moments(contours[i])
            Cx = int(moment["m10"] / moment["m00"])
            Cy = int(moment["m01"] / moment["m00"])
            center = (Cx, Cy)
            centroids.append((contours, center, moment["m00"], 0))
            cv2.circle(img, (Cx, Cy), 5, (255, 255, 255), -1)
            coordinate = '(' + str(Cx) + ',' + str(Cy) + ')'
            cv2.putText(img, coordinate, (Cx, Cy), cv2.FONT_HERSHEY_SIMPLEX,
                        0.5, RED, 1, cv2.LINE_AA)
            print(cv2.contourArea(cnt), Cx, Cy)
    cv2.imwrite(out_full_path, img)
    #cv2.imshow('canvasOutput', img);
    #cv2.waitKey(0)

    return
コード例 #6
0
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    # Convert RGB to HSV and extract the saturation channel
    h = pcv.rgb2gray_hsv(rgb_img=img, channel='h')

    # Threshold the saturation image
    h_thresh = pcv.threshold.binary(gray_img=h,
                                    threshold=85,
                                    max_value=255,
                                    object_type='dark')

    # Median Blur
    h_mblur = pcv.median_blur(gray_img=h_thresh, ksize=20)
コード例 #7
0
# In[ ]:

# This command outputs all resulting images to the notebook.
pcv.params.debug = 'plot'

# In[6]:

# Importing the image. Including the path was necessary. Mode="native" by default.
img, path, img_filename = pcv.readimage(
    filename="/users/jordanmanchengo/data/duckweed1.png")

# In[11]:

# Hue channel.
h = pcv.rgb2gray_hsv(rgb_img=img, channel='h')

# In[12]:

# Saturation channel.
s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

# In[13]:

# Value channel.
v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')

# In[14]:

# Setting a saturation threshold on "light" objects to create sharp contrast.
s_thresh = pcv.threshold.binary(gray_img=s,
コード例 #8
0
def plantCVProcess(img, x, y, w, h):

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2, x=x, y=y, h=h, w=w)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1,
                                                               roi_hierarchy=roi_hierarchy,
                                                               object_contour=id_objects,
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)

    ############### Analysis ################

    # Find shape properties, output shape image (optional)
    shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680)

    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)
    color_histogram = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='all')

    # Pseudocolor the grayscale image
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s, mask=mask, cmap='jet')

    return print_results()
コード例 #9
0
  client.connect(server, username = sshuser, pkey = mykey)
  client.get_transport().window_size = 3 * 1024 * 1024

  pcv.params.debug = 'none'

  sftp = client.open_sftp()
  with sftp.open('/plantdb/ftp-2019/{dbname}/{path}'.format(dbname=dbname,path=path)) as f:

    file_size = f.stat().st_size
    f.prefetch(file_size)
    img = cv2.imdecode(np.frombuffer(f.read(file_size), np.uint8), 1)



  # Convert RGB to HSV and extract the value channel
  s = pcv.rgb2gray_hsv(rgb_img=img, channel='v')

  # Threshold the saturation image removing highs and lows and join
  s_thresh_1 = pcv.threshold.binary(gray_img=s, threshold=10, max_value=255, object_type='light')
  s_thresh_2 = pcv.threshold.binary(gray_img=s, threshold=245, max_value=255, object_type='dark')
  s_thresh = pcv.logical_and(bin_img1=s_thresh_1, bin_img2=s_thresh_2)

  # Median Blur
  s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)


  # Convert RGB to LAB and extract the Blue channel
  b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

  # Threshold the blue image
  b_cnt = pcv.threshold.binary(gray_img=b, threshold=128, max_value=255, object_type='light')
コード例 #10
0
        # ir_ir = frames.get_infrared()
        # cv2.imshow('aligned', ir_ir)

        # aligned_depth_color_frame = rs.colorizer().colorize(aligned_depth_frame)
        # aligned_depth_color_image = np.asanyarray(aligned_depth_color_frame.get_data())
        # cv2.imshow('aligned', aligned_depth_color_image)

        # Validate that both frames are valid
        if not aligned_depth_frame or not color_frame:
            continue

        depth_image = np.asanyarray(aligned_depth_frame.get_data())
        color_image = np.asanyarray(color_frame.get_data())

        s = pcv.rgb2gray_hsv(color_image, 's')  # plantcv
        s_thresh = pcv.threshold.binary(s, 85, 255, 'light')  # plantcv
        s_mblur = pcv.median_blur(s_thresh, 5)
        s_cnt = pcv.median_blur(s_thresh, 5)
        # cv2.imshow('color - depth3', s_mblur)
        # Convert RGB to LAB and extract the Blue channel
        b = pcv.rgb2gray_lab(color_image, 'b')

        # Threshold the blue image
        b_thresh = pcv.threshold.binary(b, 160, 255, 'light')
        b_cnt = pcv.threshold.binary(b, 160, 255, 'light')

        # Fill small objects
        # b_fill = pcv.fill(b_thresh, 10)
        mask = pcv.naive_bayes_classifier(color_image, "naive_bayes_pdfs.txt")
        #histogram_low = np.sum(mask["plant"][int(360/2):, :], axis=0)
コード例 #11
0
ファイル: tray_vis.py プロジェクト: leonardblaschek/plantcv
def main():
    # Get options
    args = options()

    # Set variables
    pcv.params.debug = args.debug  # Replace the hard-coded debug with the debug flag
    pcv.params.debug_outdir = args.outdir  # set output directory

    ### Main pipeline ###

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    img, path, filename = pcv.readimage(args.image, mode='rgb')

    # Read reference image for colour correction (currently unused)
    #ref_img, ref_path, ref_filename = pcv.readimage(
    #    "/home/leonard/Dropbox/2020-01_LAC_phenotyping/images/top/renamed/20200128_2.jpg",
    #    mode="rgb")

    # Find colour cards
    #df, start, space = pcv.transform.find_color_card(rgb_img=ref_img)
    #ref_mask = pcv.transform.create_color_card_mask(rgb_img=ref_img, radius=10, start_coord=start, spacing=space, ncols=4, nrows=6)

    df, start, space = pcv.transform.find_color_card(rgb_img=img)
    img_mask = pcv.transform.create_color_card_mask(rgb_img=img,
                                                    radius=10,
                                                    start_coord=start,
                                                    spacing=space,
                                                    ncols=4,
                                                    nrows=6)

    output_directory = "."

    # Correct colour (currently unused)
    #target_matrix, source_matrix, transformation_matrix, corrected_img = pcv.transform.correct_color(ref_img, ref_mask, img, img_mask, output_directory)

    # Check that the colour correction worked (source~target should be strictly linear)
    #pcv.transform.quick_color_check(source_matrix = source_matrix, target_matrix = target_matrix, num_chips = 24)

    # Write the spacing of the colour card to file as size marker
    with open(os.path.join(path, 'output/size_marker_trays.csv'), 'a') as f:
        writer = csv.writer(f)
        writer.writerow([filename, space[0]])

    ### Crop tray ###

    # Define a bounding rectangle around the colour card
    x_cc, y_cc, w_cc, h_cc = cv2.boundingRect(img_mask)
    x_cc = int(round(x_cc - 0.3 * w_cc))
    y_cc = int(round(y_cc - 0.3 * h_cc))
    h_cc = int(round(h_cc * 1.6))
    w_cc = int(round(w_cc * 1.6))

    # Crop out colour card
    start_point = (x_cc, y_cc)
    end_point = (x_cc + w_cc, y_cc + h_cc)
    colour = (0, 0, 0)
    thickness = -1
    card_crop_img = cv2.rectangle(img, start_point, end_point, colour,
                                  thickness)

    # Convert RGB to HSV and extract the value channel
    v = pcv.rgb2gray_hsv(card_crop_img, "v")

    # Threshold the value image
    v_thresh = pcv.threshold.binary(
        v, 100, 255, "light"
    )  # start threshold at 150 with bright corner-markers, 100 without

    # Fill out bright imperfections (siliques and other dirt on the background)
    v_thresh = pcv.fill(
        v_thresh, 100)  # fill at 500 with bright corner-markers, 100 without

    # Create bounding rectangle around the tray
    x, y, w, h = cv2.boundingRect(v_thresh)

    # Crop image to tray
    #crop_img = card_crop_img[y:y+h, x:x+int(w - (w * 0.03))] # crop extra 3% from right because of tray labels
    crop_img = card_crop_img[y:y + h, x:x + w]  # crop symmetrically

    # Save cropped image for quality control
    pcv.print_image(crop_img,
                    filename=path + "/output/" + "cropped" + filename + ".png")

    ### Threshold plants ###

    # Threshold the green-magenta, blue, and hue channels
    a_thresh, _ = pcv.threshold.custom_range(img=crop_img,
                                             lower_thresh=[0, 0, 0],
                                             upper_thresh=[255, 108, 255],
                                             channel='LAB')
    b_thresh, _ = pcv.threshold.custom_range(img=crop_img,
                                             lower_thresh=[0, 0, 135],
                                             upper_thresh=[255, 255, 255],
                                             channel='LAB')
    h_thresh, _ = pcv.threshold.custom_range(img=crop_img,
                                             lower_thresh=[35, 0, 0],
                                             upper_thresh=[70, 255, 255],
                                             channel='HSV')

    # Join the thresholds (AND)
    ab = pcv.logical_and(b_thresh, a_thresh)
    abh = pcv.logical_and(ab, h_thresh)

    # Fill small objects depending on expected plant size based on DPG (make sure to take the correct file suffix jpg/JPG/jpeg...)
    match = re.search("(\d+).(\d)\.jpg$", filename)

    if int(match.group(1)) < 10:
        abh_clean = pcv.fill(abh, 50)
        print("50")
    elif int(match.group(1)) < 15:
        abh_clean = pcv.fill(abh, 200)
        print("200")
    else:
        abh_clean = pcv.fill(abh, 500)
        print("500")

    # Dilate to close broken borders
    abh_dilated = pcv.dilate(abh_clean, 3, 1)

    # Close holes
    # abh_fill = pcv.fill_holes(abh_dilated) # silly -- removed
    abh_fill = abh_dilated

    # Apply mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(crop_img, abh_fill, "white")

    # Save masked image for quality control
    pcv.print_image(masked,
                    filename=path + "/output/" + "masked" + filename + ".png")

    ### Filter and group contours ###

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(crop_img, abh_fill)

    # Create bounding box with margins to avoid border artifacts
    roi_y = 0 + crop_img.shape[0] * 0.05
    roi_x = 0 + crop_img.shape[0] * 0.05
    roi_h = crop_img.shape[0] - (crop_img.shape[0] * 0.1)
    roi_w = crop_img.shape[1] - (crop_img.shape[0] * 0.1)
    roi_contour, roi_hierarchy = pcv.roi.rectangle(crop_img, roi_y, roi_x,
                                                   roi_h, roi_w)

    # Keep all objects in the bounding box
    roi_objects, roi_obj_hierarchy, kept_mask, obj_area = pcv.roi_objects(
        img=crop_img,
        roi_type='partial',
        roi_contour=roi_contour,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy)

    # Cluster the objects by plant
    clusters, contours, hierarchies = pcv.cluster_contours(
        crop_img, roi_objects, roi_obj_hierarchy, 3, 5)

    # Split image into single plants
    out = args.outdir
    #output_path, imgs, masks = pcv.cluster_contour_splitimg(crop_img,
    #                                                        clusters,
    #                                                        contours,
    #                                                        hierarchies,
    #                                                        out,
    #                                                        file = filename)

    ### Analysis ###

    # Approximate the position of the top left plant as grid start
    coord_y = int(
        round(((crop_img.shape[0] / 3) * 0.5) + (crop_img.shape[0] * 0.025)))
    coord_x = int(
        round(((crop_img.shape[1] / 5) * 0.5) + (crop_img.shape[1] * 0.025)))

    # Set the ROI spacing relative to image dimensions
    spc_y = int((round(crop_img.shape[0] - (crop_img.shape[0] * 0.05)) / 3))
    spc_x = int((round(crop_img.shape[1] - (crop_img.shape[1] * 0.05)) / 5))

    # Set the ROI radius relative to image width
    if int(match.group(1)) < 16:
        r = int(round(crop_img.shape[1] / 12.5))
    else:
        r = int(round(crop_img.shape[1] / 20))

    # Make a grid of ROIs at the expected positions of plants
    # This allows for gaps due to dead/not germinated plants, without messing up the plant numbering
    imgs, masks = pcv.roi.multi(img=crop_img,
                                nrows=3,
                                ncols=5,
                                coord=(coord_x, coord_y),
                                radius=r,
                                spacing=(spc_x, spc_y))

    # Loop through the ROIs in the grid
    for i in range(0, len(imgs)):
        # Find objects within the ROI
        filtered_contours, filtered_hierarchy, filtered_mask, filtered_area = pcv.roi_objects(
            img=crop_img,
            roi_type="partial",
            roi_contour=imgs[i],
            roi_hierarchy=masks[i],
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy)
        # Continue only if not empty
        if len(filtered_contours) > 0:
            # Combine objects within each ROI
            plant_contour, plant_mask = pcv.object_composition(
                img=crop_img,
                contours=filtered_contours,
                hierarchy=filtered_hierarchy)

            # Analyse the shape of each plant
            analysis_images = pcv.analyze_object(img=crop_img,
                                                 obj=plant_contour,
                                                 mask=plant_mask)

            pcv.print_image(analysis_images,
                            filename=path + "/output/" + filename + "_" +
                            str(i) + "_analysed.png")

            # Determine color properties
            color_images = pcv.analyze_color(crop_img, plant_mask, "hsv")

            # Watershed plant area to count leaves (computationally intensive, use when needed)
            #watershed_images = pcv.watershed_segmentation(crop_img, plant_mask, 15)

            # Print out a .json file with the analysis data for the plant
            pcv.outputs.save_results(filename=path + "/" + filename + "_" +
                                     str(i) + '.json')

            # Clear the measurements stored globally into the Ouptuts class
            pcv.outputs.clear()
コード例 #12
0
def main():
    # Initialize options
    args = options()
    # Set PlantCV debug mode to input debug method
    pcv.params.debug = args.debug

    # Use PlantCV to read in the input image. The function outputs an image as a NumPy array, the path to the file,
    # and the image filename
    img, path, filename = pcv.readimage(filename=args.image)

    # ## Segmentation

    # ### Saturation channel
    # Convert the RGB image to HSV colorspace and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale saturation image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=80, max_value=255, object_type='light')

    # ### Blue-yellow channel
    # Convert the RGB image to LAB colorspace and extract the blue-yellow channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Use a binary threshold to set an inflection value where all pixels in the grayscale blue-yellow image below the
    # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white)
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=134, max_value=255, object_type='light')

    # ### Green-magenta channel
    # Convert the RGB image to LAB colorspace and extract the green-magenta channel
    a = pcv.rgb2gray_lab(rgb_img=img, channel='a')

    # In the green-magenta image the plant pixels are darker than the background. Setting object_type="dark" will
    # invert the image first and then use a binary threshold to set an inflection value where all pixels in the
    # grayscale green-magenta image below the threshold get set to zero (pure black) and all pixels at or above the
    # threshold get set to 255 (pure white)
    a_thresh = pcv.threshold.binary(gray_img=a, threshold=122, max_value=255, object_type='dark')

    # Combine the binary images for the saturation and blue-yellow channels. The "or" operator returns a binary image
    # that is white when a pixel was white in either or both input images
    bs = pcv.logical_or(bin_img1=s_thresh, bin_img2=b_thresh)

    # Combine the binary images for the combined saturation and blue-yellow channels and the green-magenta channel.
    # The "or" operator returns a binary image that is white when a pixel was white in either or both input images
    bsa = pcv.logical_or(bin_img1=bs, bin_img2=a_thresh)

    # The combined binary image labels plant pixels well but the background still has pixels labeled as foreground.
    # Small white noise (salt) in the background can be removed by filtering white objects in the image by size and
    # setting a size threshold where smaller objects can be removed
    bsa_fill1 = pcv.fill(bin_img=bsa, size=15)  # Fill small noise

    # Before more stringent size filtering is done we want to connect plant parts that may still be disconnected from
    # the main plant. Use a dilation to expand the boundary of white regions. Ksize is the size of a box scanned
    # across the image and i is the number of times a scan is done
    bsa_fill2 = pcv.dilate(gray_img=bsa_fill1, ksize=3, i=3)

    # Remove small objects by size again but use a higher threshold
    bsa_fill3 = pcv.fill(bin_img=bsa_fill2, size=250)

    # Use the binary image to identify objects or connected components.
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=bsa_fill3)

    # Because the background still contains pixels labeled as foreground, the object list contains background.
    # Because these images were collected in an automated system the plant is always centered in the image at the
    # same position each time. Define a region of interest (ROI) to set the area where we expect to find plant
    # pixels. PlantCV can make simple ROI shapes like rectangles, circles, etc. but here we use a custom ROI to fit a
    # polygon around the plant area
    roi_custom, roi_hier_custom = pcv.roi.custom(img=img, vertices=[[1085, 1560], [1395, 1560], [1395, 1685],
                                                                    [1890, 1744], [1890, 25], [600, 25], [615, 1744],
                                                                    [1085, 1685]])

    # Use the ROI to filter out objects found outside the ROI. When `roi_type = "cutto"` objects outside the ROI are
    # cropped out. The default `roi_type` is "partial" which allows objects to overlap the ROI and be retained
    roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi_custom,
                                                                  roi_hierarchy=roi_hier_custom,
                                                                  object_contour=id_objects,
                                                                  obj_hierarchy=obj_hierarchy, roi_type='cutto')

    # Filter remaining objects by size again to remove any remaining background objects
    filled_mask1 = pcv.fill(bin_img=kept_mask, size=350)

    # Use a closing operation to first dilate (expand) and then erode (shrink) the plant to fill in any additional
    # gaps in leaves or stems
    filled_mask2 = pcv.closing(gray_img=filled_mask1)

    # Remove holes or dark spot noise (pepper) in the plant binary image
    filled_mask3 = pcv.fill_holes(filled_mask2)

    # With the clean binary image identify the contour of the plant
    id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=filled_mask3)

    # Because a plant or object of interest may be composed of multiple contours, it is required to combine all
    # remaining contours into a single contour before measurements can be done
    obj, mask = pcv.object_composition(img=img, contours=id_objects, hierarchy=obj_hierarchy)

    # ## Measurements PlantCV has several built-in measurement or analysis methods. Here, basic measurements of size
    # and shape are done. Additional typical modules would include plant height (`pcv.analyze_bound_horizontal`) and
    # color (`pcv.analyze_color`)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)

    # Save the shape image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_shapes.png")
        pcv.print_image(img=shape_img, filename=outfile)

    # ## Morphology workflow

    # Update a few PlantCV parameters for plotting purposes
    pcv.params.text_size = 1.5
    pcv.params.text_thickness = 5
    pcv.params.line_thickness = 15

    # Convert the plant mask into a "skeletonized" image where each path along the stem and leaves are a single pixel
    # wide
    skel = pcv.morphology.skeletonize(mask=mask)

    # Sometimes wide parts of leaves or stems are skeletonized in the direction perpendicular to the main path. These
    # "barbs" or "spurs" can be removed by pruning the skeleton to remove small paths. Pruning will also separate the
    # individual path segments (leaves and stem parts)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=skel, size=30, mask=mask)
    pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=pruned, size=3, mask=mask)

    # Leaf and stem segments above are separated but only into individual paths. We can sort the segments into stem
    # and leaf paths by identifying primary segments (stems; those that end in a branch point) and secondary segments
    # (leaves; those that begin at a branch point and end at a tip point)
    leaf_objects, other_objects = pcv.morphology.segment_sort(skel_img=pruned, objects=segment_objects, mask=mask)

    # Label the segment unique IDs
    segmented_img, labeled_id_img = pcv.morphology.segment_id(skel_img=pruned, objects=leaf_objects, mask=mask)

    # Measure leaf insertion angles. Measures the angle between a line fit through the stem paths and a line fit
    # through the first `size` points of each leaf path
    labeled_angle_img = pcv.morphology.segment_insertion_angle(skel_img=pruned, segmented_img=segmented_img,
                                                               leaf_objects=leaf_objects, stem_objects=other_objects,
                                                               size=22)

    # Save leaf angle image if requested
    if args.writeimg:
        outfile = os.path.join(args.outdir, filename[:-4] + "_leaf_insertion_angles.png")
        pcv.print_image(img=labeled_angle_img, filename=outfile)

    # ## Other potential morphological measurements There are many other functions that extract data from within the
    # morphology sub-package of PlantCV. For our purposes, we are most interested in the relative angle between each
    # leaf and the stem which we measure with `plantcv.morphology.segment_insertion_angle`. However, the following
    # cells show some of the other traits that we are able to measure from images that can be succesfully sorted into
    # primary and secondary segments.

    # Segment the plant binary mask using the leaf and stem segments. Allows for the measurement of individual leaf
    # areas
    # filled_img = pcv.morphology.fill_segments(mask=mask, objects=leaf_objects)

    # Measure the path length of each leaf (geodesic distance)
    # labeled_img2 = pcv.morphology.segment_path_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the straight-line, branch point to tip distance (Euclidean) for each leaf
    # labeled_img3 = pcv.morphology.segment_euclidean_length(segmented_img=segmented_img, objects=leaf_objects)

    # Measure the curvature of each leaf (Values closer to 1 indicate that a segment is a straight line while larger
    # values indicate the segment has more curvature)
    # labeled_img4 = pcv.morphology.segment_curvature(segmented_img=segmented_img, objects=leaf_objects)

    # Measure absolute leaf angles (angle of linear regression line fit to each leaf object) Note: negative values
    # signify leaves to the left of the stem, positive values signify leaves to the right of the stem
    # labeled_img5 = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=leaf_objects)

    # Measure leaf curvature in degrees
    # labeled_img6 = pcv.morphology.segment_tangent_angle(segmented_img=segmented_img, objects=leaf_objects, size=35)

    # Measure stem characteristics like stem angle and length
    # stem_img = pcv.morphology.analyze_stem(rgb_img=img, stem_objects=other_objects)

    # Remove unneeded observations (hack)
    _ = pcv.outputs.observations.pop("tips")
    _ = pcv.outputs.observations.pop("branch_pts")
    angles = pcv.outputs.observations["segment_insertion_angle"]["value"]
    remove_indices = []
    for i, value in enumerate(angles):
        if value == "NA":
            remove_indices.append(i)
    remove_indices.sort(reverse=True)
    for i in remove_indices:
        _ = pcv.outputs.observations["segment_insertion_angle"]["value"].pop(i)

    # ## Save the results out to file for downsteam analysis
    pcv.print_results(filename=args.result)
コード例 #13
0
ファイル: plcv.py プロジェクト: sih2020admin/IC465_SAAHASi
def main():
    # Get options
    args = options()

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=85,
                                    max_value=255,
                                    object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b,
                                    threshold=160,
                                    max_value=255,
                                    object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=160,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
    cv2.imwrite("masked.jpeg", masked)

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=135,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')
    cv2.imwrite("masked2.jpeg", masked2)
コード例 #14
0
# Normalize the white color so you can later
# compare color between images.

# Inputs:
#   img = image object, RGB color space
#   roi = region for white reference, if none uses the whole image,
#         otherwise (x position, y position, box width, box height)

# white balance image based on white toughspot
img1 = pcv.white_balance(crop_img, roi=(0, 0, 200, 20))

# In[109]:

# Convert RGB to HSV and extract the saturation channel
# Then set threshold for saturation
s = pcv.rgb2gray_hsv(rgb_img=img1, channel='s')
s_thresh = pcv.threshold.binary(gray_img=s,
                                threshold=122,
                                max_value=255,
                                object_type='dark')

# In[110]:

# Set Median Blur
#Input box size "ksize"
s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=2)
s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=2)

# In[111]:

# Convert RGB to LAB and extract the blue channel
コード例 #15
0
def report_size_marker_area(img, roi_contour, roi_hierarchy, marker='define', objcolor='dark', thresh_channel=None,
                            thresh=None):
    """Detects a size marker in a specified region and reports its size and eccentricity

    Inputs:
    img             = An RGB or grayscale image to plot the marker object on
    roi_contour     = A region of interest contour (e.g. output from pcv.roi.rectangle or other methods)
    roi_hierarchy   = A region of interest contour hierarchy (e.g. output from pcv.roi.rectangle or other methods)
    marker          = 'define' or 'detect'. If define it means you set an area, if detect it means you want to
                      detect within an area
    objcolor        = Object color is 'dark' or 'light' (is the marker darker or lighter than the background)
    thresh_channel  = 'h', 's', or 'v' for hue, saturation or value
    thresh          = Binary threshold value (integer)

    Returns:
    analysis_images = List of output images

    :param img: numpy.ndarray
    :param roi_contour: list
    :param roi_hierarchy: numpy.ndarray
    :param marker: str
    :param objcolor: str
    :param thresh_channel: str
    :param thresh: int
    :return: analysis_images: list
    """

    params.device += 1
    # Make a copy of the reference image
    ref_img = np.copy(img)
    # If the reference image is grayscale convert it to color
    if len(np.shape(ref_img)) == 2:
        ref_img = cv2.cvtColor(ref_img, cv2.COLOR_GRAY2BGR)

    # Marker components
    # If the marker type is "defined" then the marker_mask and marker_contours are equal to the input ROI
    # Initialize a binary image
    roi_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8)
    # Draw the filled ROI on the mask
    cv2.drawContours(roi_mask, roi_contour, -1, (255), -1)
    marker_mask = []
    marker_contour = []

    # If the marker type is "detect" then we will use the ROI to isolate marker contours from the input image
    if marker.upper() == 'DETECT':
        # We need to convert the input image into an one of the HSV channels and then threshold it
        if thresh_channel is not None and thresh is not None:
            # Mask the input image
            masked = apply_mask(rgb_img=ref_img, mask=roi_mask, mask_color="black")
            # Convert the masked image to hue, saturation, or value
            marker_hsv = rgb2gray_hsv(rgb_img=masked, channel=thresh_channel)
            # Threshold the HSV image
            marker_bin = binary_threshold(gray_img=marker_hsv, threshold=thresh, max_value=255, object_type=objcolor)
            # Identify contours in the masked image
            contours, hierarchy = find_objects(img=ref_img, mask=marker_bin)
            # Filter marker contours using the input ROI
            kept_contours, kept_hierarchy, kept_mask, obj_area = roi_objects(img=ref_img, object_contour=contours,
                                                                             obj_hierarchy=hierarchy,
                                                                             roi_contour=roi_contour,
                                                                             roi_hierarchy=roi_hierarchy,
                                                                             roi_type="partial")
            # If there are more than one contour detected, combine them into one
            # These become the marker contour and mask
            marker_contour, marker_mask = object_composition(img=ref_img, contours=kept_contours,
                                                             hierarchy=kept_hierarchy)
        else:
            fatal_error('thresh_channel and thresh must be defined in detect mode')
    elif marker.upper() == "DEFINE":
        # Identify contours in the masked image
        contours, hierarchy = find_objects(img=ref_img, mask=roi_mask)
        # If there are more than one contour detected, combine them into one
        # These become the marker contour and mask
        marker_contour, marker_mask = object_composition(img=ref_img, contours=contours, hierarchy=hierarchy)
    else:
        fatal_error("marker must be either 'define' or 'detect' but {0} was provided.".format(marker))

    # Calculate the moments of the defined marker region
    m = cv2.moments(marker_mask, binaryImage=True)
    # Calculate the marker area
    marker_area = m['m00']

    # Fit a bounding ellipse to the marker
    center, axes, angle = cv2.fitEllipse(marker_contour)
    major_axis = np.argmax(axes)
    minor_axis = 1 - major_axis
    major_axis_length = axes[major_axis]
    minor_axis_length = axes[minor_axis]
    # Calculate the bounding ellipse eccentricity
    eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis]) ** 2)

    # Make a list to store output images
    analysis_image = []
    cv2.drawContours(ref_img, marker_contour, -1, (255, 0, 0), 5)
    # out_file = os.path.splitext(filename)[0] + '_sizemarker.jpg'
    # print_image(ref_img, out_file)
    analysis_image.append(ref_img)
    if params.debug is 'print':
        print_image(ref_img, os.path.join(params.debug_outdir, str(params.device) + '_marker_shape.png'))
    elif params.debug is 'plot':
        plot_image(ref_img)

    outputs.add_observation(variable='marker_area', trait='marker area',
                            method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int,
                            value=marker_area, label='pixels')
    outputs.add_observation(variable='marker_ellipse_major_axis', trait='marker ellipse major axis length',
                            method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int,
                            value=major_axis_length, label='pixels')
    outputs.add_observation(variable='marker_ellipse_minor_axis', trait='marker ellipse minor axis length',
                            method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int,
                            value=minor_axis_length, label='pixels')
    outputs.add_observation(variable='marker_ellipse_eccentricity', trait='marker ellipse eccentricity',
                            method='plantcv.plantcv.report_size_marker_area', scale='none', datatype=float,
                            value=eccentricity, label='none')

    # Store images
    outputs.images.append(analysis_image)

    return analysis_image
コード例 #16
0
def report_size_marker_area(img,
                            roi_contour,
                            roi_hierarchy,
                            marker='define',
                            objcolor='dark',
                            thresh_channel=None,
                            thresh=None):
    """Detects a size marker in a specified region and reports its size and eccentricity

    Inputs:
    img             = An RGB or grayscale image to plot the marker object on
    roi_contour     = A region of interest contour (e.g. output from pcv.roi.rectangle or other methods)
    roi_hierarchy   = A region of interest contour hierarchy (e.g. output from pcv.roi.rectangle or other methods)
    marker          = 'define' or 'detect'. If define it means you set an area, if detect it means you want to
                      detect within an area
    objcolor        = Object color is 'dark' or 'light' (is the marker darker or lighter than the background)
    thresh_channel  = 'h', 's', or 'v' for hue, saturation or value
    thresh          = Binary threshold value (integer)

    Returns:
    analysis_images = List of output images

    :param img: numpy.ndarray
    :param roi_contour: list
    :param roi_hierarchy: numpy.ndarray
    :param marker: str
    :param objcolor: str
    :param thresh_channel: str
    :param thresh: int
    :return: analysis_images: list
    """
    # Store debug
    debug = params.debug
    params.debug = None

    params.device += 1
    # Make a copy of the reference image
    ref_img = np.copy(img)
    # If the reference image is grayscale convert it to color
    if len(np.shape(ref_img)) == 2:
        ref_img = cv2.cvtColor(ref_img, cv2.COLOR_GRAY2BGR)

    # Marker components
    # If the marker type is "defined" then the marker_mask and marker_contours are equal to the input ROI
    # Initialize a binary image
    roi_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8)
    # Draw the filled ROI on the mask
    cv2.drawContours(roi_mask, roi_contour, -1, (255), -1)
    marker_mask = []
    marker_contour = []

    # If the marker type is "detect" then we will use the ROI to isolate marker contours from the input image
    if marker.upper() == 'DETECT':
        # We need to convert the input image into an one of the HSV channels and then threshold it
        if thresh_channel is not None and thresh is not None:
            # Mask the input image
            masked = apply_mask(rgb_img=ref_img,
                                mask=roi_mask,
                                mask_color="black")
            # Convert the masked image to hue, saturation, or value
            marker_hsv = rgb2gray_hsv(rgb_img=masked, channel=thresh_channel)
            # Threshold the HSV image
            marker_bin = binary_threshold(gray_img=marker_hsv,
                                          threshold=thresh,
                                          max_value=255,
                                          object_type=objcolor)
            # Identify contours in the masked image
            contours, hierarchy = find_objects(img=ref_img, mask=marker_bin)
            # Filter marker contours using the input ROI
            kept_contours, kept_hierarchy, kept_mask, obj_area = roi_objects(
                img=ref_img,
                object_contour=contours,
                obj_hierarchy=hierarchy,
                roi_contour=roi_contour,
                roi_hierarchy=roi_hierarchy,
                roi_type="partial")
            # If there are more than one contour detected, combine them into one
            # These become the marker contour and mask
            marker_contour, marker_mask = object_composition(
                img=ref_img, contours=kept_contours, hierarchy=kept_hierarchy)
        else:
            fatal_error(
                'thresh_channel and thresh must be defined in detect mode')
    elif marker.upper() == "DEFINE":
        # Identify contours in the masked image
        contours, hierarchy = find_objects(img=ref_img, mask=roi_mask)
        # If there are more than one contour detected, combine them into one
        # These become the marker contour and mask
        marker_contour, marker_mask = object_composition(img=ref_img,
                                                         contours=contours,
                                                         hierarchy=hierarchy)
    else:
        fatal_error(
            "marker must be either 'define' or 'detect' but {0} was provided.".
            format(marker))

    # Calculate the moments of the defined marker region
    m = cv2.moments(marker_mask, binaryImage=True)
    # Calculate the marker area
    marker_area = m['m00']

    # Fit a bounding ellipse to the marker
    center, axes, angle = cv2.fitEllipse(marker_contour)
    major_axis = np.argmax(axes)
    minor_axis = 1 - major_axis
    major_axis_length = axes[major_axis]
    minor_axis_length = axes[minor_axis]
    # Calculate the bounding ellipse eccentricity
    eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis])**2)

    cv2.drawContours(ref_img, marker_contour, -1, (255, 0, 0), 5)
    analysis_image = ref_img

    # Reset debug mode
    params.debug = debug

    if params.debug is 'print':
        print_image(
            ref_img,
            os.path.join(params.debug_outdir,
                         str(params.device) + '_marker_shape.png'))
    elif params.debug is 'plot':
        plot_image(ref_img)

    outputs.add_observation(variable='marker_area',
                            trait='marker area',
                            method='plantcv.plantcv.report_size_marker_area',
                            scale='pixels',
                            datatype=int,
                            value=marker_area,
                            label='pixels')
    outputs.add_observation(variable='marker_ellipse_major_axis',
                            trait='marker ellipse major axis length',
                            method='plantcv.plantcv.report_size_marker_area',
                            scale='pixels',
                            datatype=int,
                            value=major_axis_length,
                            label='pixels')
    outputs.add_observation(variable='marker_ellipse_minor_axis',
                            trait='marker ellipse minor axis length',
                            method='plantcv.plantcv.report_size_marker_area',
                            scale='pixels',
                            datatype=int,
                            value=minor_axis_length,
                            label='pixels')
    outputs.add_observation(variable='marker_ellipse_eccentricity',
                            trait='marker ellipse eccentricity',
                            method='plantcv.plantcv.report_size_marker_area',
                            scale='none',
                            datatype=float,
                            value=eccentricity,
                            label='none')

    # Store images
    outputs.images.append(analysis_image)

    return analysis_image
コード例 #17
0
def colorspaces(rgb_img, original_img=True):
    """ Visualize an RGB image in all potential colorspaces

    Inputs:
    rgb_img      = RGB image data
    original_img = Whether or not to include the original image the the debugging plot

    Returns:
    plotting_img = Plotting image containing the original image and L,A,B,H,S, and V colorspaces

    :param segmented_img: numpy.ndarray
    :param original_img: bool
    :return labeled_img: numpy.ndarray

    """

    if not len(np.shape(rgb_img)) == 3:
        fatal_error("Input image is not RGB!")

    # Store and disable debug mode
    debug = params.debug
    params.debug = None

    # Initialize grayscale images list, rgb images list, plotting coordinates
    colorspace_names = ["H", "S", "V", "L", "A", "B"]
    all_colorspaces = []
    labeled_imgs = []
    y = int(np.shape(rgb_img)[0] / 2)
    x = int(np.shape(rgb_img)[1] / 2)

    # Loop through and create grayscale imgs from each colorspace
    for i in range(0, 3):
        channel = colorspace_names[i]
        all_colorspaces.append(rgb2gray_hsv(rgb_img=rgb_img, channel=channel))
    for i in range(3, 6):
        channel = colorspace_names[i]
        all_colorspaces.append(rgb2gray_lab(rgb_img=rgb_img, channel=channel))

    # Plot labels of each colorspace on the corresponding img
    for i, colorspace in enumerate(all_colorspaces):
        converted_img = cv2.cvtColor(colorspace, cv2.COLOR_GRAY2RGB)
        labeled = cv2.putText(img=converted_img, text=colorspace_names[i], org=(x, y),
                              fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                              fontScale=params.text_size, color=(255, 0, 255), thickness=params.text_thickness)
        labeled_imgs.append(labeled)

    # Compile images together, including a larger version of the original image
    plotting_img = np.vstack([np.hstack([labeled_imgs[0], labeled_imgs[1], labeled_imgs[2]]),
                          np.hstack([labeled_imgs[3], labeled_imgs[4], labeled_imgs[5]])])

    # If original_img is True then also plot the original image with the rest of them
    if original_img:
        plotting_img = np.hstack([resize(img=rgb_img, resize_x=2, resize_y=2), plotting_img])
    plotting_img = resize(plotting_img,  resize_x=.5, resize_y=.5)

    # Reset debug mode
    params.debug = debug

    if params.debug == "print":
        # If debug is print, save the image to a file
        print_image(plotting_img, os.path.join(params.debug_outdir, str(params.device) + "_vis_colorspaces.png"))
    elif params.debug == "plot":
        # If debug is plot, print to the plotting device
        plot_image(plotting_img)

    return plotting_img
コード例 #18
0
def main():
    # Get options
    args = options()

    if args.debug:
        pcv.params.debug = args.debug  # set debug mode
        if args.debugdir:
            pcv.params.debug_outdir = args.debugdir  # set debug directory
            os.makedirs(args.debugdir, exist_ok=True)

    # pixel_resolution
    # mm
    # see pixel_resolution.xlsx for calibration curve for pixel to mm translation
    pixelresolution = 0.052

    # The result file should exist if plantcv-workflow.py was run
    if os.path.exists(args.result):
        # Open the result file
        results = open(args.result, "r")
        # The result file would have image metadata in it from plantcv-workflow.py, read it into memory
        metadata = json.load(results)
        # Close the file
        results.close()
        # Delete the file, we will create new ones
        os.remove(args.result)
        plantbarcode = metadata['metadata']['plantbarcode']['value']
        print(plantbarcode,
              metadata['metadata']['timestamp']['value'],
              sep=' - ')

    else:
        # If the file did not exist (for testing), initialize metadata as an empty string
        metadata = "{}"
        regpat = re.compile(args.regex)
        plantbarcode = re.search(regpat, args.image).groups()[0]

    # read images and create mask
    img, _, fn = pcv.readimage(args.image)
    imagename = os.path.splitext(fn)[0]

    # create mask

    # taf=filters.try_all_threshold(s_img)
    ## remove background
    s_img = pcv.rgb2gray_hsv(img, 's')
    min_s = filters.threshold_minimum(s_img)
    thresh_s = pcv.threshold.binary(s_img, min_s, 255, 'light')
    rm_bkgrd = pcv.fill_holes(thresh_s)

    ## low greenness
    thresh_s = pcv.threshold.binary(s_img, min_s + 15, 255, 'dark')
    # taf = filters.try_all_threshold(s_img)
    c = pcv.logical_xor(rm_bkgrd, thresh_s)
    cinv = pcv.invert(c)
    cinv_f = pcv.fill(cinv, 500)
    cinv_f_c = pcv.closing(cinv_f, np.ones((5, 5)))
    cinv_f_c_e = pcv.erode(cinv_f_c, 2, 1)

    ## high greenness
    a_img = pcv.rgb2gray_lab(img, channel='a')
    # taf = filters.try_all_threshold(a_img)
    t_a = filters.threshold_isodata(a_img)
    thresh_a = pcv.threshold.binary(a_img, t_a, 255, 'dark')
    thresh_a = pcv.closing(thresh_a, np.ones((5, 5)))
    thresh_a_f = pcv.fill(thresh_a, 500)
    ## combined mask
    lor = pcv.logical_or(cinv_f_c_e, thresh_a_f)
    close = pcv.closing(lor, np.ones((2, 2)))
    fill = pcv.fill(close, 800)
    erode = pcv.erode(fill, 3, 1)
    fill2 = pcv.fill(erode, 1200)
    # dilate = pcv.dilate(fill2,2,2)
    mask = fill2

    final_mask = np.zeros_like(mask)

    # Compute greenness
    # split color channels
    b, g, r = cv2.split(img)
    # print green intensity
    # g_img = pcv.visualize.pseudocolor(g, cmap='Greens', background='white', min_value=0, max_value=255, mask=mask, axes=False)

    # convert color channels to int16 so we can add them (values will be greater than 255 which is max of current uint8 format)
    g = g.astype('uint16')
    r = r.astype('uint16')
    b = b.astype('uint16')
    denom = g + r + b

    # greenness index
    out_flt = np.zeros_like(denom, dtype='float32')
    # divide green by sum of channels to compute greenness index with values 0-1
    gi = np.divide(g,
                   denom,
                   out=out_flt,
                   where=np.logical_and(denom != 0, mask > 0))

    # find objects
    c, h = pcv.find_objects(img, mask)
    rc, rh = pcv.roi.multi(img, coord=[(1300, 900), (1300, 2400)], radius=350)
    # Turn off debug temporarily, otherwise there will be a lot of plots
    pcv.params.debug = None
    # Loop over each region of interest
    i = 0
    rc_i = rc[i]
    for i, rc_i in enumerate(rc):
        rh_i = rh[i]

        # Add ROI number to output. Before roi_objects so result has NA if no object.
        pcv.outputs.add_observation(variable='roi',
                                    trait='roi',
                                    method='roi',
                                    scale='int',
                                    datatype=int,
                                    value=i,
                                    label='#')

        roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects(
            img,
            roi_contour=rc_i,
            roi_hierarchy=rh_i,
            object_contour=c,
            obj_hierarchy=h,
            roi_type='partial')

        if obj_area == 0:

            print('\t!!! No object found in ROI', str(i))
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=0,
                label='sq mm')

        else:

            # Combine multiple objects
            # ple plant objects within an roi together
            plant_object, plant_mask = pcv.object_composition(
                img=img, contours=roi_obj, hierarchy=hierarchy_obj)

            final_mask = pcv.image_add(final_mask, plant_mask)

            # Save greenness for individual ROI
            grnindex = np.mean(gi[np.where(plant_mask > 0)])
            pcv.outputs.add_observation(
                variable='greenness_index',
                trait='mean normalized greenness index',
                method='g/sum(b+g+r)',
                scale='[0,1]',
                datatype="<class 'float'>",
                value=float(grnindex),
                label='/1')

            # Analyze all colors
            hist = pcv.analyze_color(img, plant_mask, 'all')

            # Analyze the shape of the current plant
            shape_img = pcv.analyze_object(img, plant_object, plant_mask)
            plant_area = pcv.outputs.observations['area'][
                'value'] * pixelresolution**2
            pcv.outputs.add_observation(
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=pixelresolution,
                datatype="<class 'float'>",
                value=plant_area,
                label='sq mm')

        # end if-else

        # At this point we have observations for one plant
        # We can write these out to a unique results file
        # Here I will name the results file with the ROI ID combined with the original result filename
        basename, ext = os.path.splitext(args.result)
        filename = basename + "-roi" + str(i) + ext
        # Save the existing metadata to the new file
        with open(filename, "w") as r:
            json.dump(metadata, r)
        pcv.print_results(filename=filename)
        # The results are saved, now clear out the observations so the next loop adds new ones for the next plant
        pcv.outputs.clear()

        if args.writeimg and obj_area != 0:
            imgdir = os.path.join(args.outdir, 'shape_images', plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                shape_img,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-shape.png'))

            imgdir = os.path.join(args.outdir, 'colorhist_images',
                                  plantbarcode)
            os.makedirs(imgdir, exist_ok=True)
            pcv.print_image(
                hist,
                os.path.join(imgdir,
                             imagename + '-roi' + str(i) + '-colorhist.png'))

# end roi loop

    if args.writeimg:
        # save grnness image of entire tray
        imgdir = os.path.join(args.outdir, 'pseudocolor_images', plantbarcode)
        os.makedirs(imgdir, exist_ok=True)
        gi_img = pcv.visualize.pseudocolor(gi,
                                           obj=None,
                                           mask=final_mask,
                                           cmap='viridis',
                                           axes=False,
                                           min_value=0.3,
                                           max_value=0.6,
                                           background='black',
                                           obj_padding=0)
        gi_img = add_scalebar(gi_img,
                              pixelresolution=pixelresolution,
                              barwidth=20,
                              barlocation='lower left')
        gi_img.set_size_inches(6, 6, forward=False)
        gi_img.savefig(os.path.join(imgdir, imagename + '-greenness.png'),
                       bbox_inches='tight')
        gi_img.clf()
コード例 #19
0
def plot_hotspots(directory, filename,convex_hull_flag):
 
    # Read image
    in_full_path  = os.path.join(directory, filename)     
    img, path, filename = pcv.readimage(in_full_path, mode="rgb")
    img_thermal = img.copy()    
      
    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)     
    edge = cv2.Canny(s_mblur, 60, 180) 
    
    outfile = 'Gray_' + filename 
    out_full_path = os.path.join(directory, outfile)
    cv2.imwrite(out_full_path, edge)      
    
   
    # Contours extraction       
    contours, hierarchy = cv2.findContours(edge.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
    #contours = sorted(contours, key=cv2.contourArea, reverse=True)
    
    hull_list = []
    if (convex_hull_flag == True):
        for i in range(len(contours)):
            hull = cv2.convexHull(contours[i])
            hull_list.append(hull)  
        contours = hull_list
    
    mask  = np.zeros(edge.shape, np.uint8)
    hiers = hierarchy[0]
    for i in range(len(contours)):  
            if hiers[i][3] != -1:
               continue
            cv2.drawContours(mask, contours, i,255, cv2.LINE_AA)   
            ## Find all inner contours and draw 
            ch = hiers[i][2]
            while ch != -1:
                cv2.drawContours(mask, contours, ch, (255,0,255), -1, cv2.LINE_AA)
                ch = hiers[ch][0]
           
    thermal = thermal_image(img_thermal, mask) 

    if (convex_hull_flag == True):
        outfile = 'Thermal_tree_CH_' + filename
    else:
        outfile = 'Thermal_tree_' + filename            
    out_full_path = os.path.join(directory, outfile)
    cv2.imwrite(out_full_path, thermal)  
            
    centroids = []    
    if (convex_hull_flag == True):
        area_threshold = 30
    else:
        area_threshold = 10    
 
    for i, cnt in enumerate(contours):  
           cv2.drawContours(mask, contours, i,255, cv2.FILLED)                      
           if (cv2.contourArea(cnt) > area_threshold ):
               moment = cv2.moments(contours[i]) 
               Cx = int(moment["m10"]/moment["m00"])
               Cy = int(moment["m01"]/moment["m00"])
               center = (Cx, Cy)
               centroids.append((contours, center, moment["m00"], 0))
               #cv2.circle(img, (Cx, Cy), 5, (255, 255, 255), -1)
               coordinate = '(' + str(Cx) + ',' + str(Cy) + ')'
               cv2.putText(img, coordinate, (Cx,Cy), cv2.FONT_HERSHEY_SIMPLEX, 0.5, RED, 1, cv2.LINE_AA)
               print(cv2.contourArea(cnt),Cx, Cy)     
    
    if Debug == True:
        fig, ax = plt.subplots(1, figsize=(12,8))    
        plt.imshow(mask, cmap='Greys') 
    
    if (convex_hull_flag == True):    
        outfile = 'Hotspots_CH_' + filename 
    else:
        outfile = 'Hotspots_' + filename 
    out_full_path = os.path.join(directory, outfile)
    cv2.imwrite(out_full_path, img) 
    return
コード例 #20
0
def generateMask(input, output, maskType=MASK_TYPES['BW']):
    pcv.params.debug = True  #set debug mode
    # pcv.params.debug_outdir="./output.txt" #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', 'envi', or 'csv'
    img, path, filename = pcv.readimage(filename=input, mode='rgb')

    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s,
                                    threshold=85,
                                    max_value=255,
                                    object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image
    b_thresh = pcv.threshold.binary(gray_img=b,
                                    threshold=160,
                                    max_value=255,
                                    object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b,
                                 threshold=160,
                                 max_value=255,
                                 object_type='light')

    # Fill small objects
    # b_fill = pcv.fill(b_thresh, 10)

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=135,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)
    if maskType == MASK_TYPES['BW']:
        pcv.print_image(ab, filename=output)
        return (True, None)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='black')
    if maskType == MASK_TYPES['COLORED']:
        pcv.print_image(masked2, filename=output)
        return (True, None)

    return (False, 'Unknown mask type.')
    """
コード例 #21
0
def main():

    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    img, path, filename = pcv.readimage(filename=args.image, mode='rgb')

    ### SELECTING THE PLANT

    ### Attempt 5 combineren
    # Parameters
    hue_lower_tresh = 22  # 24
    hue_higher_tresh = 50  # 50
    saturation_lower_tresh = 138  # 140
    saturation_higher_tresh = 230  # 230
    value_lower_tresh = 120  # 125
    value_higher_tresh = 255  # 255
    # RGB color space
    green_lower_tresh = 105  # 110
    green_higher_tresh = 255  # 255
    red_lower_tresh = 22  # 24
    red_higher_thresh = 98  # 98
    blue_lower_tresh = 85  # 85
    blue_higher_tresh = 253  # 255
    # CIELAB color space
    #lab_blue_lower_tresh = 0            # Blue yellow channel
    #lab_blue_higher_tresh = 255

    s = pcv.rgb2gray_hsv(rgb_img=img, channel='h')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[hue_lower_tresh],
        upper_thresh=[hue_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white')
    # Filtered on Hue
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[saturation_lower_tresh],
        upper_thresh=[saturation_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on saturation
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v')
    mask, masked_image = pcv.threshold.custom_range(
        rgb_img=s,
        lower_thresh=[value_lower_tresh],
        upper_thresh=[value_higher_tresh],
        channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on value
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, green_lower_tresh, 0],
        upper_thresh=[255, green_higher_tresh, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on green
    mask, masked = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[red_lower_tresh, 0, 0],
        upper_thresh=[red_higher_thresh, 255, 255],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
    #filtered on red
    mask_old, masked_old = pcv.threshold.custom_range(
        rgb_img=masked,
        lower_thresh=[0, 0, blue_lower_tresh],
        upper_thresh=[255, 255, blue_higher_tresh],
        channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked_old,
                            mask=mask_old,
                            mask_color='white')
    #filtered on blue
    #b = pcv.rgb2gray_lab(rgb_img = masked, channel = 'b')   # Converting toe CIElab blue_yellow image
    #b_thresh =pcv.threshold.binary(gray_img = b, threshold=lab_blue_lower_tresh, max_value = lab_blue_higher_tresh)

    ###_____________________________________ Now to identify objects
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=125,  # original 115
        max_value=255,
        object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(
        gray_img=masked_a,
        threshold=140,  # original 135
        max_value=255,
        object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    # Inputs:
    #   bin_img - Binary image data
    #   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    ab = pcv.median_blur(gray_img=ab, ksize=3)
    ab_fill = pcv.fill(bin_img=ab, size=1000)
    #print("filled")
    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')
    # ID the objects
    id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill)
    # Let's just take the largest
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=0,
                                            y=0,
                                            h=960,
                                            w=1280)  # Currently hardcoded

    # Decide which objects to keep
    # Inputs:
    #    img            = img to display kept objects
    #    roi_contour    = contour of roi, output from any ROI function
    #    roi_hierarchy  = contour of roi, output from any ROI function
    #    object_contour = contours of objects, output from pcv.find_objects function
    #    obj_hierarchy  = hierarchy of objects, output from pcv.find_objects function
    #    roi_type       = 'partial' (default, for partially inside), 'cutto', or
    #    'largest' (keep only largest contour)
    with HiddenPrints():
        roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
            img=img,
            roi_contour=roi1,
            roi_hierarchy=roi_hierarchy,
            object_contour=id_objects,
            obj_hierarchy=obj_hierarchy,
            roi_type='partial')
    # Object combine kept objects
    # Inputs:
    #   img - RGB or grayscale image data for plotting
    #   contours - Contour list
    #   hierarchy - Contour hierarchy array
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    #print("final plant")
    new_im = Image.fromarray(masked2)
    new_im.save("output//" + args.filename + "last_masked.png")

    ##################_________________ Analysis

    outfile = args.outdir + "/" + filename
    # Here come all the analyse functions.
    # pcv.acute_vertex(img, obj, 30, 15, 100)

    color_img = pcv.analyze_color(rgb_img=img,
                                  mask=kept_mask,
                                  hist_plot_type=None)
    #new_im = Image.fromarray(color_img)
    #new_im.save(args.filename + "color_img.png")

    # Find shape properties, output shape image (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj- Single or grouped contour object
    #   mask - Binary image mask to use as mask for moments analysis
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "shape_img.png")
    # Shape properties relative to user boundary line (optional)

    # Inputs:
    #   img - RGB or grayscale image data
    #   obj - Single or grouped contour object
    #   mask - Binary mask of selected contours
    #   line_position - Position of boundary line (a value of 0 would draw a line
    #                   through the bottom of the image)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "boundary_img.png")
    # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional)

    # Inputs:
    #   rgb_img - RGB image data
    #   mask - Binary mask of selected contours
    #   hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv'
    #                    This is the data to be printed to the SVG histogram file
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    #new_im = Image.fromarray(color_histogram)
    #new_im.save(args.filename + "color_histogram_img.png")

    # Pseudocolor the grayscale image

    # Inputs:
    #     gray_img - Grayscale image data
    #     obj - Single or grouped contour object (optional), if provided the pseudocolored image gets
    #           cropped down to the region of interest.
    #     mask - Binary mask (optional)
    #     background - Background color/type. Options are "image" (gray_img, default), "white", or "black". A mask
    #                  must be supplied.
    #     cmap - Colormap
    #     min_value - Minimum value for range of interest
    #     max_value - Maximum value for range of interest
    #     dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi).
    #     axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True).
    #     colorbar - If False then the colorbar won't be displayed (default colorbar=True)
    pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s,
                                                  mask=kept_mask,
                                                  cmap='jet')
    #new_im = Image.fromarray(pseudocolored_img)
    #new_im.save(args.filename + "pseudocolored.png")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
コード例 #22
0
def iterate_rois(img, c, h, rc, rh, args, masked=True, gi=False, shape=False, hist=True, hue=False):
    """Analyze each ROI separately and store results

    Parameters
    ----------
    img : ndarray
        rgb image
    c : list
        object contours
    h : list
        object countour hierarchy
    rc : list
        roi contours
    rh : list
        roi contour hierarchy
    threshold_mask : ndarray
        binary image (mask) from threshold steps
    args : dict
        commandline arguments and metadata from running the workflow
    masked : boolean
        whether to print masked rgb images for each roi
    gi : boolean
        whether to print greenness index false color
    shape : boolean
        whether to print object shapes on an image
    hist : boolean
        whether to print color histogram
    hue : boolean
        whether to save hsv color info and print the hue false color image

    Returns
    -------
        binary image of plant mask that includes both threshold and roi filter steps : ndarray

    """

    final_mask = np.zeros(shape=np.shape(img)[0:2], dtype='uint8')

    # Compute greenness
    if gi:
        img_gi = cppc.compute.greenness_index(img=img, mask=final_mask+1)

    if hue:
        img_h = pcv.rgb2gray_hsv(img, 'h')

    for i, rc_i in enumerate(rc):
        rh_i = rh[i]

        # Add ROI number to output. Before roi_objects so result has NA if no object.
        pcv.outputs.add_observation(
            sample='default',
            variable='roi',
            trait='roi',
            method='roi',
            scale='int',
            datatype=int,
            value=i,
            label='#')

        roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects(
            img, roi_contour=rc_i, roi_hierarchy=rh_i, object_contour=c, obj_hierarchy=h, roi_type='partial')

        if obj_area == 0:

            print('\t!!! No object found in ROI', str(i))
            pcv.outputs.add_observation(
                sample='default',
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=cppc.pixelresolution,
                datatype="<class 'float'>",
                value=0,
                label='sq mm')

        else:

            # Combine multiple objects
            # ple plant objects within an roi together
            plant_object, plant_mask = pcv.object_composition(
                img=img, contours=roi_obj, hierarchy=hierarchy_obj)

            final_mask = pcv.image_add(final_mask, plant_mask)

            if gi:
                # Save greenness for individual ROI
                grnindex = cppc.utils.mean(img_gi, plant_mask)
                grnindexstd = cppc.utils.std(img_gi, plant_mask)
                pcv.outputs.add_observation(
                    sample='default',
                    variable='greenness_index',
                    trait='mean normalized greenness index',
                    method='g/sum(b+g+r)',
                    scale='[0,1]',
                    datatype="<class 'float'>",
                    value=float(grnindex),
                    label='/1')

                pcv.outputs.add_observation(
                    sample='default',
                    variable='greenness_index_std',
                    trait='std normalized greenness index',
                    method='g/sum(b+g+r)',
                    scale='[0,1]',
                    datatype="<class 'float'>",
                    value=float(grnindexstd),
                    label='/1')

            # Analyze all colors
            if hist:
                colorhist = pcv.analyze_color(img, plant_mask, 'all')
            elif hue:
                _ = pcv.analyze_color(img, plant_mask, 'hsv')

            # Analyze the shape of the current plant (always do this even if shape is False so you can get plant_area)
            img_shape = pcv.analyze_object(img, plant_object, plant_mask)
            plant_area = pcv.outputs.observations['default']['area']['value'] * cppc.pixelresolution**2
            pcv.outputs.add_observation(
                sample='default',
                variable='plantarea',
                trait='plant area in sq mm',
                method='observations.area*pixelresolution^2',
                scale=cppc.pixelresolution,
                datatype="<class 'float'>",
                value=plant_area,
                label='sq mm')
        # end if-else

        # At this point we have observations for one plant
        # We can write these out to a unique results file
        write_output(args, i)

        if args.writeimg and obj_area != 0:
            if shape:
                imgdir = os.path.join(args.outdir, 'shape_images', args.plantbarcode)
                os.makedirs(imgdir, exist_ok=True)
                pcv.print_image(img_shape, os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-shape.png'))

            if hist:
                imgdir = os.path.join(args.outdir, 'colorhist_images', args.plantbarcode)
                os.makedirs(imgdir, exist_ok=True)
                pcv.print_image(colorhist, os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-colorhist.png'))

            if masked:
                # save masked rgb image for entire tray but only 1 plant
                imgdir = os.path.join(args.outdir, 'maskedrgb_images')
                os.makedirs(imgdir, exist_ok=True)
                img_masked = pcv.apply_mask(img, plant_mask, 'black')
                pcv.print_image(
                    img_masked,
                    os.path.join(imgdir,
                                 args.imagename + '-roi' + str(i) + '-masked.png'))

            if hue:
                # save hue false color image for entire tray but only 1 plant
                imgdir = os.path.join(args.outdir, 'hue_images')
                os.makedirs(imgdir, exist_ok=True)
                fig_hue = pcv.visualize.pseudocolor(img_h*2, obj=None,
                                                    mask=plant_mask,
                                                    cmap=cppc.viz.get_cmap('hue'),
                                                    axes=False,
                                                    min_value=0, max_value=179,
                                                    background='black', obj_padding=0)
                fig_hue = cppc.viz.add_scalebar(fig_hue,
                                    pixelresolution=cppc.pixelresolution,
                                    barwidth=10,
                                    barlabel='1 cm',
                                    barlocation='lower left')
                fig_hue.set_size_inches(6, 6, forward=False)
                fig_hue.savefig(os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-hue.png'),
                                bbox_inches='tight',
                                dpi=300)
                fig_hue.clf()

            if gi:
                # save grnness image of entire tray but only 1 plant
                imgdir = os.path.join(args.outdir, 'grnindex_images')
                os.makedirs(imgdir, exist_ok=True)
                fig_gi = pcv.visualize.pseudocolor(img_gi,
                                                   obj=None,
                                                   mask=plant_mask,
                                                   cmap='viridis',
                                                   axes=False,
                                                   min_value=0.3,
                                                   max_value=0.6,
                                                   background='black',
                                                   obj_padding=0)
                fig_gi = cppc.viz.add_scalebar(
                    fig_gi,
                    pixelresolution=cppc.pixelresolution,
                    barwidth=10,
                    barlabel='1 cm',
                    barlocation='lower left')
                fig_gi.set_size_inches(6, 6, forward=False)
                fig_gi.savefig(os.path.join(
                    imgdir,
                    args.imagename + '-roi' + str(i) + '-greenness.png'),
                               bbox_inches='tight',
                               dpi=300)
                fig_gi.clf()

        # end roi loop
    return final_mask
コード例 #23
0
def report_size_marker_area(img,
                            shape,
                            device,
                            debug,
                            marker='define',
                            x_adj=0,
                            y_adj=0,
                            w_adj=0,
                            h_adj=0,
                            base='white',
                            objcolor='dark',
                            thresh_channel=None,
                            thresh=None,
                            filename=False):
    """Outputs numeric properties for an input object (contour or grouped contours).

    Inputs:
    img             = image object (most likely the original), color(RGB)
    shape           = 'rectangle', 'circle', 'ellipse'
    device          = device number. Used to count steps in the pipeline
    debug           = None, print, or plot. Print = save to file, Plot = print to screen.
    marker          = define or detect, if define it means you set an area, if detect it means you want to
                      detect within an area
    x_adj           = x position of shape, integer
    y_adj           = y position of shape, integer
    w_adj           = width
    h_adj           = height
    plantcv            = background color 'white' is default
    objcolor        = object color is 'dark' or 'light'
    thresh_channel  = 'h', 's','v'
    thresh          = integer value
    filename        = name of file

    Returns:
    device          = device number
    marker_header    = shape data table headers
    marker_data      = shape data table values
    analysis_images = list of output images

    :param img: numpy array
    :param shape: str
    :param device: int
    :param debug: str
    :param marker: str
    :param x_adj:int
    :param y_adj:int
    :param w_adj:int
    :param h_adj:int
    :param h_adj:int
    :param base:str
    :param objcolor: str
    :param thresh_channel:str
    :param thresh:int
    :param filename: str
    :return: device: int
    :return: marker_header: str
    :return: marker_data: int
    :return: analysis_images: list
    """

    device += 1
    ori_img = np.copy(img)
    if len(np.shape(img)) == 3:
        ix, iy, iz = np.shape(img)
    else:
        ix, iy = np.shape(img)

    size = ix, iy
    roi_background = np.zeros(size, dtype=np.uint8)
    roi_size = (ix - 5), (iy - 5)
    roi = np.zeros(roi_size, dtype=np.uint8)
    roi1 = roi + 1
    roi_contour, roi_heirarchy = cv2.findContours(roi1, cv2.RETR_TREE,
                                                  cv2.CHAIN_APPROX_NONE)[-2:]
    cv2.drawContours(roi_background, roi_contour[0], -1, (255, 0, 0), 5)

    if (x_adj > 0 and w_adj > 0) or (y_adj > 0 and h_adj > 0):
        fatal_error(
            'Adjusted ROI position is out of frame, this will cause problems in detecting objects'
        )

    for cnt in roi_contour:
        size1 = ix, iy, 3
        background = np.zeros(size1, dtype=np.uint8)
        if shape == 'rectangle' and (x_adj >= 0 and y_adj >= 0):
            x, y, w, h = cv2.boundingRect(cnt)
            x1 = x + x_adj
            y1 = y + y_adj
            w1 = w + w_adj
            h1 = h + h_adj
            cv2.rectangle(background, (x1, y1), (x + w1, y + h1), (1, 1, 1),
                          -1)
        elif shape == 'circle':
            x, y, w, h = cv2.boundingRect(cnt)
            x1 = x + x_adj
            y1 = y + y_adj
            w1 = w + w_adj
            h1 = h + h_adj
            center = (int((w + x1) / 2), int((h + y1) / 2))
            if h > w:
                radius = int(w1 / 2)
                cv2.circle(background, center, radius, (1, 1, 1), -1)
            else:
                radius = int(h1 / 2)
                cv2.circle(background, center, radius, (1, 1, 1), -1)
        elif shape == 'ellipse':
            x, y, w, h = cv2.boundingRect(cnt)
            x1 = x + x_adj
            y1 = y + y_adj
            w1 = w + w_adj
            h1 = h + h_adj
            center = (int((w + x1) / 2), int((h + y1) / 2))
            if w > h:
                cv2.ellipse(background, center, (int(w1 / 2), int(h1 / 2)), 0,
                            0, 360, (1, 1, 1), -1)
            else:
                cv2.ellipse(background, center, (int(h1 / 2), int(w1 / 2)), 0,
                            0, 360, (1, 1, 1), -1)
        else:
            fatal_error('Shape' + str(shape) +
                        ' is not "rectangle", "circle", or "ellipse"!')

    markerback = cv2.cvtColor(background, cv2.COLOR_RGB2GRAY)
    shape_contour, hierarchy = cv2.findContours(markerback, cv2.RETR_TREE,
                                                cv2.CHAIN_APPROX_NONE)[-2:]
    cv2.drawContours(ori_img, shape_contour, -1, (255, 255, 0), 5)

    if debug is 'print':
        print_image(ori_img, (str(device) + '_marker_roi.png'))
    elif debug is 'plot':
        plot_image(ori_img)

    if marker == 'define':
        m = cv2.moments(markerback, binaryImage=True)
        area = m['m00']
        device, id_objects, obj_hierarchy = find_objects(
            img, markerback, device, debug)
        device, obj, mask = object_composition(img, id_objects, obj_hierarchy,
                                               device, debug)
        center, axes, angle = cv2.fitEllipse(obj)
        major_axis = np.argmax(axes)
        minor_axis = 1 - major_axis
        major_axis_length = axes[major_axis]
        minor_axis_length = axes[minor_axis]
        eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis])**2)

    elif marker == 'detect':
        if thresh_channel is not None and thresh is not None:
            if base == 'white':
                masked = cv2.multiply(img, background)
                marker1 = markerback * 255
                mask1 = cv2.bitwise_not(marker1)
                markstack = np.dstack((mask1, mask1, mask1))
                added = cv2.add(masked, markstack)
            else:
                added = cv2.multiply(img, background)
            device, maskedhsv = rgb2gray_hsv(added, thresh_channel, device,
                                             debug)
            device, masked2a_thresh = binary_threshold(maskedhsv, thresh, 255,
                                                       objcolor, device, debug)
            device, id_objects, obj_hierarchy = find_objects(
                added, masked2a_thresh, device, debug)
            device, roi1, roi_hierarchy = define_roi(added, shape, device,
                                                     None, 'default', debug,
                                                     True, x_adj, y_adj, w_adj,
                                                     h_adj)
            device, roi_o, hierarchy3, kept_mask, obj_area = roi_objects(
                img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy,
                device, debug)
            device, obj, mask = object_composition(img, roi_o, hierarchy3,
                                                   device, debug)

            cv2.drawContours(ori_img,
                             roi_o,
                             -1, (0, 255, 0),
                             -1,
                             lineType=8,
                             hierarchy=hierarchy3)
            m = cv2.moments(mask, binaryImage=True)
            area = m['m00']

            center, axes, angle = cv2.fitEllipse(obj)
            major_axis = np.argmax(axes)
            minor_axis = 1 - major_axis
            major_axis_length = axes[major_axis]
            minor_axis_length = axes[minor_axis]
            eccentricity = np.sqrt(1 -
                                   (axes[minor_axis] / axes[major_axis])**2)

        else:
            fatal_error(
                'thresh_channel and thresh must be defined in detect mode')
    else:
        fatal_error("marker must be either in 'detect' or 'define' mode")

    analysis_images = []
    if filename:
        out_file = str(filename[0:-4]) + '_sizemarker.jpg'
        print_image(ori_img, out_file)
        analysis_images.append(['IMAGE', 'marker', out_file])
    if debug is 'print':
        print_image(ori_img, (str(device) + '_marker_shape.png'))
    elif debug is 'plot':
        plot_image(ori_img)

    marker_header = ('HEADER_MARKER', 'marker_area',
                     'marker_major_axis_length', 'marker_minor_axis_length',
                     'marker_eccentricity')

    marker_data = ('MARKER_DATA', area, major_axis_length, minor_axis_length,
                   eccentricity)

    return device, marker_header, marker_data, analysis_images
コード例 #24
0
DATA_DIR = ''

for image in os.listdir(DATA_DIR):
    # Read Image
    image = cv2.imread(DATA_DIR + "/" + image)

    # Prompt the user to select the region of interest
    roi = cv2.selectROI(image)

    # Collect the cropped image
    cropped_img = image[int(roi[1]):int(roi[1] + roi[3]),
                        int(roi[0]):int(roi[0] + roi[2])]

    # Convert RGB to HSV and extract saturation channel
    # The HSV value can be changed to be h, s, or v depending on the colour of the flower
    saturation_img = pcv.rgb2gray_hsv(cropped_img, 'h')

    # Threshold the saturation img
    # Depending on the output of the saturation image, the value can be light or dark
    # Light or dark is what defines what part of the image its to be removed
    saturation_thresh = pcv.threshold.binary(saturation_img, 85, 255, 'light')

    # Apply median blur
    saturation_mblur = pcv.median_blur(saturation_thresh, 5)

    # Convert RGB to LAB and extract blue channel
    # Like the HSV function this can be l, a, or b depending on the colour of the flower
    blue_channel_img = pcv.rgb2gray_lab(cropped_img, 'l')
    blue_channel_cnt = pcv.threshold.binary(blue_channel_img, 160, 255,
                                            'light')
コード例 #25
0
def silhouette_top():
    "First we draw the picture from the 3D data"
    ########################################################################################################################################################################
    x = []
    y = []
    z = []
    image_top = Image.new("RGB", (width, height), color='white')
    draw = ImageDraw.Draw(image_top)
    data_3d = open(args.image, "r")
    orignal_file = args.image
    for line in data_3d:
        line = line.split(",")
        y.append(int(line[0]))
        x.append(int(line[1]))
        z.append(int(line[2]))

    i = 0
    for point_x in x:
        point_y = y[i]
        draw.rectangle([point_x, point_y, point_x + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_top.save("top_temp.png")

    image_side = Image.new("RGB", (1280, 960), color='white')
    draw = ImageDraw.Draw(image_side)
    i = 0
    for point_y in y:
        point_z = z[i]
        draw.rectangle([point_z, point_y, point_z + 1, point_y + 1],
                       fill="black")
        #rectange takes input [x0, y0, x1, y1]
        i += 1
    image_side.save("side_temp.png")
    ########################################################################################################################################################################

    args.image = "top_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_top_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_top_shape.png")

    new_im.save("output//" + args.filename + "shape_img.png")
    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result)
    ##########################################################################################################################################

    args.image = "side_temp.png"
    # Get options
    pcv.params.debug = args.debug  #set debug mode
    pcv.params.debug_outdir = args.outdir  #set output directory

    pcv.params.debug = args.debug  # set debug mode
    pcv.params.debug_outdir = args.outdir  # set output directory

    # Read image
    img, path, filename = pcv.readimage(filename=args.image)

    v = pcv.rgb2gray_hsv(rgb_img=img, channel='v')
    v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v,
                                                         lower_thresh=[0],
                                                         upper_thresh=[200],
                                                         channel='gray')

    id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image,
                                                 mask=v_thresh)

    # Define ROI
    roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image,
                                            x=0,
                                            y=0,
                                            h=height,
                                            w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)
    outfile = args.outdir + "/" + filename

    # Shape properties relative to user boundary line (optional)
    boundary_img1 = pcv.analyze_bound_horizontal(img=img,
                                                 obj=obj,
                                                 mask=mask,
                                                 line_position=1680)
    new_im = Image.fromarray(boundary_img1)
    new_im.save("output//" + args.filename + "_side_boundary.png")

    # Find shape properties, output shape image (optional)
    shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask)
    new_im = Image.fromarray(shape_img)
    new_im.save("output//" + args.filename + "_side_shape.png")

    GT = re.sub(pattern, replacement, files_names[file_counter])
    pcv.outputs.add_observation(variable="genotype",
                                trait="genotype",
                                method="Regexed from the filename",
                                scale=None,
                                datatype=str,
                                value=int(GT),
                                label="GT")

    # Write shape and color data to results file
    pcv.print_results(filename=args.result_side)
コード例 #26
0
def main():
    # Get options
    args = options()

    # Set variables
    device = 0
    pcv.params.debug = args.debug
    img_file = args.image

    # Read image
    img, path, filename = pcv.readimage(filename=img_file, mode='rgb')

    # Process saturation channel from HSV colour space
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')
    lp_s = pcv.laplace_filter(s, 1, 1)
    shrp_s = pcv.image_subtract(s, lp_s)
    s_eq = pcv.hist_equalization(shrp_s)
    s_thresh = pcv.threshold.binary(gray_img=s_eq,
                                    threshold=215,
                                    max_value=255,
                                    object_type='light')
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Process green-magenta channel from LAB colour space
    b = pcv.rgb2gray_lab(rgb_img=img, channel='a')
    b_lp = pcv.laplace_filter(b, 1, 1)
    b_shrp = pcv.image_subtract(b, b_lp)
    b_thresh = pcv.threshold.otsu(b_shrp, 255, object_type='dark')

    # Create and apply mask
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh)
    filled = pcv.fill_holes(bs)
    masked = pcv.apply_mask(img=img, mask=filled, mask_color='white')

    # Extract colour channels from masked image
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a,
                                          threshold=115,
                                          max_value=255,
                                          object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a,
                                           threshold=140,
                                           max_value=255,
                                           object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b,
                                          threshold=128,
                                          max_value=255,
                                          object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Produce and apply a mask
    opened_ab = pcv.opening(gray_img=ab)
    ab_fill = pcv.fill(bin_img=ab, size=200)
    closed_ab = pcv.closing(gray_img=ab_fill)
    masked2 = pcv.apply_mask(img=masked, mask=bs, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define region of interest (ROI)
    roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2,
                                            x=250,
                                            y=100,
                                            h=200,
                                            w=200)

    # Decide what objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(
        img=img,
        roi_contour=roi1,
        roi_hierarchy=roi_hierarchy,
        object_contour=id_objects,
        obj_hierarchy=obj_hierarchy,
        roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img,
                                       contours=roi_objects,
                                       hierarchy=hierarchy3)

    ############### Analysis ################

    outfile = False
    if args.writeimg == True:
        outfile = args.outdir + "/" + filename

    # Analyze the plant
    analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask)
    color_histogram = pcv.analyze_color(rgb_img=img,
                                        mask=kept_mask,
                                        hist_plot_type='all')
    top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)
    top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img,
                                                             obj=obj,
                                                             mask=mask)

    # Print results of the analysis
    pcv.print_results(filename=args.result)
    pcv.output_mask(img,
                    kept_mask,
                    filename,
                    outdir=args.outdir,
                    mask_only=True)
コード例 #27
0
def test(true_positive_file, test_parameters):
    hue_lower_tresh = test_parameters[0]
    hue_higher_tresh = test_parameters[1]
    saturation_lower_tresh = test_parameters[2]
    saturation_higher_tresh = test_parameters[3]
    value_lower_tresh = test_parameters[4]
    value_higher_tresh = test_parameters[5]
    green_lower_tresh = test_parameters[6]
    green_higher_tresh = test_parameters[7]
    red_lower_tresh = test_parameters[8]
    red_higher_thresh = test_parameters[9]
    blue_lower_tresh = test_parameters[10]
    blue_higher_tresh = test_parameters[11]
    blur_k = test_parameters[12]
    fill_k = test_parameters[13]
    
    class args:
            #image = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\0214_2018-03-07 08.55 - 26_cam9.png"
            image = true_positive_file
            outdir = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\output"
            debug = debug_setting
            result = "results.txt"
    # Get options
    pcv.params.debug=args.debug #set debug mode
    pcv.params.debug_outdir=args.outdir #set output directory

    # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb')
    # Inputs:
    #   filename - Image file to be read in 
    #   mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv'
    img, path, filename = pcv.readimage(filename=args.image, mode='rgb')
    
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='h')
    mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[hue_lower_tresh], upper_thresh=[hue_higher_tresh], channel='gray')
    masked = pcv.apply_mask(rgb_img=img, mask = mask, mask_color = 'white')
    #print("filtered on hue")
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s')
    mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[saturation_lower_tresh], upper_thresh=[saturation_higher_tresh], channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white')
    #print("filtered on saturation")
    s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v')
    mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[value_lower_tresh], upper_thresh=[value_higher_tresh], channel='gray')
    masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white')
    #print("filtered on value")
    mask, masked = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[0,green_lower_tresh,0], upper_thresh=[255,green_higher_tresh,255], channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white')
    #print("filtered on green")
    mask, masked = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[red_lower_tresh,0,0], upper_thresh=[red_higher_thresh,255,255], channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white')
    #print("filtered on red")
    mask_old, masked_old = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[0,0,blue_lower_tresh], upper_thresh=[255,255,blue_higher_tresh], channel='RGB')
    masked = pcv.apply_mask(rgb_img=masked_old, mask = mask_old, mask_color = 'white')
    #print("filtered on blue")
    ###____________________________________ Blur to minimize 
    try:
        s_mblur = pcv.median_blur(gray_img = masked_old, ksize = blur_k)
        s = pcv.rgb2gray_hsv(rgb_img=s_mblur, channel='v')
        mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[0], upper_thresh=[254], channel='gray')
    except:
        print("failed blur step")
    try:
        mask = pcv.fill(mask, fill_k)
    except:
        pass
    masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white')


    ###_____________________________________ Now to identify objects
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')
    
     # Threshold the green-magenta and blue images
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, 
                                      max_value=255, object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, 
                                           max_value=255, object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, 
                                          max_value=255, object_type='light')
    
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)
    
    # Fill small objects
    # Inputs: 
    #   bin_img - Binary image data 
    #   size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled
    ab_fill = pcv.fill(bin_img=ab, size=200)
    #print("filled")
    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white')
    
    id_objects, obj_hierarchy = pcv.find_objects(masked, ab_fill)
    # Let's just take the largest
    roi1, roi_hierarchy= pcv.roi.rectangle(img=masked, x=0, y=0, h=960, w=1280)  # Currently hardcoded
    with HiddenPrints():
        roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, 
                                                                       roi_hierarchy=roi_hierarchy, 
                                                                       object_contour=id_objects, 
                                                                       obj_hierarchy=obj_hierarchy,
                                                                       roi_type=roi_type)
    obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)
    
    if use_mask == True:
        return(mask)
    else:
        masked2 = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white')
        return(masked2)
コード例 #28
0
def segmentation(imgW, imgNIR, shape):
    # VIS example from PlantCV with few modifications

    # Higher value = more strict selection
    s_threshold = 165
    b_threshold = 200

    # Read image
    img = imread(imgW)
    #img = cvtColor(img, COLOR_BGR2RGB)
    imgNIR = imread(imgNIR)
    #imgNIR = cvtColor(imgNIR, COLOR_BGR2RGB)
    #img, path, img_filename = pcv.readimage(filename=imgW, mode="native")
    #imgNIR, pathNIR, imgNIR_filename = pcv.readimage(filename=imgNIR, mode="native")

    # Convert RGB to HSV and extract the saturation channel
    s = pcv.rgb2gray_hsv(rgb_img=img, channel='s')

    # Threshold the saturation image
    s_thresh = pcv.threshold.binary(gray_img=s, threshold=s_threshold, max_value=255, object_type='light')

    # Median Blur
    s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5)
    s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5)

    # Convert RGB to LAB and extract the Blue channel
    b = pcv.rgb2gray_lab(rgb_img=img, channel='b')

    # Threshold the blue image ORIGINAL 160
    b_thresh = pcv.threshold.binary(gray_img=b, threshold=b_threshold, max_value=255, object_type='light')
    b_cnt = pcv.threshold.binary(gray_img=b, threshold=b_threshold, max_value=255, object_type='light')

    # Join the thresholded saturation and blue-yellow images
    bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt)

    # Apply Mask (for VIS images, mask_color=white)
    masked = pcv.apply_mask(img=img, mask=bs, mask_color='white')

    # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels
    masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a')
    masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b')

    # Threshold the green-magenta and blue images
    # 115
    # 135
    # 128
    maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark')
    maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light')
    maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light')

    # Join the thresholded saturation and blue-yellow images (OR)
    ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh)
    ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1)

    # Fill small objects
    ab_fill = pcv.fill(bin_img=ab, size=200)

    # Apply mask (for VIS images, mask_color=white)
    masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white')

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill)

    # Define ROI
    height = shape[0]
    width = shape[1]
    roi1, roi_hierarchy= pcv.roi.rectangle(img=masked2, x=0, y=0, h=height, w=width)

    # Decide which objects to keep
    roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, 
                                                               roi_hierarchy=roi_hierarchy, 
                                                               object_contour=id_objects, 
                                                               obj_hierarchy=obj_hierarchy,
                                                               roi_type='partial')

    # Object combine kept objects
    obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3)
    
    # Filling holes in the mask, works great for alive plants, not so good for dead plants
    filled_mask = pcv.fill_holes(mask)

    final = pcv.apply_mask(img=imgNIR, mask=mask, mask_color='white')
    pcv.print_image(final, "./segment/segment-temp.png")
コード例 #29
0
def main():
    # create options object for argument parsing
    args = options()
    # set device
    device = 0
    # set debug
    pcv.params.debug = args.debug

    outfile = False
    if args.writeimg:
        outfile = os.path.join(args.outdir, os.path.basename(args.image)[:-4])

    # read in image
    img, path, filename = pcv.readimage(filename=args.image, debug=args.debug)

    # read in a background image for each zoom level
    config_file = open(args.bkg, 'r')
    config = json.load(config_file)
    config_file.close()
    if "z1500" in args.image:
        bkg_image = config["z1500"]
    elif "z2500" in args.image:
        bkg_image = config["z2500"]
    else:
        pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))

    bkg, bkg_path, bkg_filename = pcv.readimage(filename=bkg_image, debug=args.debug)

    # Detect edges in the background image
    device, bkg_sat = pcv.rgb2gray_hsv(img=bkg, channel="s", device=device, debug=args.debug)
    device += 1
    bkg_edges = feature.canny(bkg_sat)
    if args.debug == "print":
        pcv.print_image(img=bkg_edges, filename=str(device) + '_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_edges, cmap="gray")

    # Close background edge contours
    bkg_edges_closed = ndi.binary_closing(bkg_edges)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=bkg_edges_closed, filename=str(device) + '_closed_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_edges_closed, cmap="gray")

    # Fill in closed contours in background
    bkg_fill_contours = ndi.binary_fill_holes(bkg_edges_closed)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=bkg_fill_contours, filename=str(device) + '_filled_background_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=bkg_fill_contours, cmap="gray")

    # Naive Bayes image classification/segmentation
    device, mask = pcv.naive_bayes_classifier(img=img, pdf_file=args.pdf, device=device, debug=args.debug)

    # Do a light cleaning of the plant mask to remove small objects
    cleaned = morphology.remove_small_objects(mask["plant"].astype(bool), 2)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=cleaned, filename=str(device) + '_cleaned_mask.png')
    elif args.debug == "plot":
        pcv.plot_image(img=cleaned, cmap="gray")

    # Convert the input image to a saturation channel grayscale image
    device, sat = pcv.rgb2gray_hsv(img=img, channel="s", device=device, debug=args.debug)

    # Detect edges in the saturation image
    edges = feature.canny(sat)
    device += 1
    if args.debug == "print":
        pcv.print_image(img=edges, filename=str(device) + '_plant_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=edges, cmap="gray")

    # Combine pixels that are in both foreground edges and the filled background edges
    device, combined_bkg = pcv.logical_and(img1=edges.astype(np.uint8) * 255,
                                           img2=bkg_fill_contours.astype(np.uint8) * 255, device=device,
                                           debug=args.debug)

    # Remove background pixels from the foreground edges
    device += 1
    filtered = np.copy(edges)
    filtered[np.where(combined_bkg == 255)] = False
    if args.debug == "print":
        pcv.print_image(img=filtered, filename=str(device) + '_filtered_edges.png')
    elif args.debug == "plot":
        pcv.plot_image(img=filtered, cmap="gray")

    # Combine the cleaned naive Bayes mask and the filtered foreground edges
    device += 1
    combined = cleaned + filtered
    if args.debug == "print":
        pcv.print_image(img=combined, filename=str(device) + '_combined_foreground.png')
    elif args.debug == "plot":
        pcv.plot_image(img=combined, cmap="gray")

    # Close off broken edges and other incomplete contours
    device += 1
    closed_features = ndi.binary_closing(combined, structure=np.ones((3, 3)))
    if args.debug == "print":
        pcv.print_image(img=closed_features, filename=str(device) + '_closed_features.png')
    elif args.debug == "plot":
        pcv.plot_image(img=closed_features, cmap="gray")

    # Fill in holes in contours
    # device += 1
    # fill_contours = ndi.binary_fill_holes(closed_features)
    # if args.debug == "print":
    #     pcv.print_image(img=fill_contours, filename=str(device) + '_filled_contours.png')
    # elif args.debug == "plot":
    #     pcv.plot_image(img=fill_contours, cmap="gray")

    # Use median blur to break horizontal and vertical thin edges (pot edges)
    device += 1
    blurred_img = ndi.median_filter(closed_features.astype(np.uint8) * 255, (3, 1))
    blurred_img = ndi.median_filter(blurred_img, (1, 3))
    # Remove small objects left behind by blurring
    cleaned2 = morphology.remove_small_objects(blurred_img.astype(bool), 200)
    if args.debug == "print":
        pcv.print_image(img=cleaned2, filename=str(device) + '_cleaned_by_median_blur.png')
    elif args.debug == "plot":
        pcv.plot_image(img=cleaned2, cmap="gray")

    # Define region of interest based on camera zoom level for masking the naive Bayes classified image
    # if "z1500" in args.image:
    #     h = 1000
    # elif "z2500" in args.image:
    #     h = 1050
    # else:
    #     pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    # roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img)

    # Mask the classified image to remove noisy areas prior to finding contours
    # side_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8)
    # cv2.drawContours(side_mask, roi, -1, (255), -1)
    # device, masked_img = pcv.apply_mask(img=cv2.merge([mask["plant"], mask["plant"], mask["plant"]]), mask=side_mask,
    #                                     mask_color="black", device=device, debug=args.debug)
    # Convert the masked image back to grayscale
    # masked_img = masked_img[:, :, 0]
    # Close off contours at the base of the plant
    # if "z1500" in args.image:
    #     pt1 = (1100, 1118)
    #     pt2 = (1340, 1120)
    # elif "z2500" in args.image:
    #     pt1 = (1020, 1162)
    #     pt2 = (1390, 1166)
    # else:
    #     pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    # masked_img = cv2.rectangle(np.copy(masked_img), pt1, pt2, (255), -1)
    # closed_mask = ndi.binary_closing(masked_img.astype(bool), iterations=3)

    # Find objects in the masked naive Bayes mask
    # device, objects, obj_hierarchy = pcv.find_objects(img=img, mask=np.copy(masked_img), device=device,
    #                                                   debug=args.debug)
    # objects, obj_hierarchy = cv2.findContours(np.copy(closed_mask.astype(np.uint8) * 255), cv2.RETR_CCOMP,
    #                                           cv2.CHAIN_APPROX_NONE)[-2:]

    # Clean up the combined plant edges/mask image by removing filled in gaps/holes
    # device += 1
    # cleaned3 = np.copy(cleaned2)
    # cleaned3 = cleaned3.astype(np.uint8) * 255
    # # Loop over the contours from the naive Bayes mask
    # for c, contour in enumerate(objects):
    #     # Calculate the area of each contour
    #     # area = cv2.contourArea(contour)
    #     # If the contour is a hole (i.e. it has no children and it has a parent)
    #     # And it is not a small hole in a leaf that was not classified
    #     if obj_hierarchy[0][c][2] == -1 and obj_hierarchy[0][c][3] > -1:
    #         # Then fill in the contour (hole) black on the cleaned mask
    #         cv2.drawContours(cleaned3, objects, c, (0), -1, hierarchy=obj_hierarchy)
    # if args.debug == "print":
    #     pcv.print_image(img=cleaned3, filename=str(device) + '_gaps_removed.png')
    # elif args.debug == "plot":
    #     pcv.plot_image(img=cleaned3, cmap="gray")

    # Find contours using the cleaned mask
    device, contours, contour_hierarchy = pcv.find_objects(img=img, mask=np.copy(cleaned2.astype(np.uint8)),
                                                           device=device, debug=args.debug)

    # Define region of interest based on camera zoom level for contour filtering
    if "z1500" in args.image:
        h = 940
    elif "z2500" in args.image:
        h = 980
    else:
        pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))
    roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img)

    # Filter contours in the region of interest
    device, roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_type='partial', roi_contour=roi,
                                                                          roi_hierarchy=roi_hierarchy,
                                                                          object_contour=contours,
                                                                          obj_hierarchy=contour_hierarchy,
                                                                          device=device, debug=args.debug)

    # Analyze only images with plants present
    if len(roi_objects) > 0:
        # Object combine kept objects
        device, plant_contour, plant_mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy,
                                                                   device=device, debug=args.debug)

        if args.writeimg:
            # Save the plant mask if requested
            pcv.print_image(img=plant_mask, filename=outfile + "_mask.png")

        # Find shape properties, output shape image
        device, shape_header, shape_data, shape_img = pcv.analyze_object(img=img, imgname=args.image, obj=plant_contour,
                                                                         mask=plant_mask, device=device,
                                                                         debug=args.debug,
                                                                         filename=outfile)
        # Set the boundary line based on the camera zoom level
        if "z1500" in args.image:
            line_position = 930
        elif "z2500" in args.image:
            line_position = 885
        else:
            pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image))

        # Shape properties relative to user boundary line
        device, boundary_header, boundary_data, boundary_img = pcv.analyze_bound_horizontal(img=img, obj=plant_contour,
                                                                                            mask=plant_mask,
                                                                                            line_position=line_position,
                                                                                            device=device,
                                                                                            debug=args.debug,
                                                                                            filename=outfile)

        # Determine color properties: Histograms, Color Slices and Pseudocolored Images,
        # output color analyzed images
        device, color_header, color_data, color_img = pcv.analyze_color(img=img, imgname=args.image, mask=plant_mask,
                                                                        bins=256,
                                                                        device=device, debug=args.debug,
                                                                        hist_plot_type=None,
                                                                        pseudo_channel="v", pseudo_bkg="img",
                                                                        resolution=300,
                                                                        filename=outfile)

        # Output shape and color data
        result = open(args.result, "a")
        result.write('\t'.join(map(str, shape_header)) + "\n")
        result.write('\t'.join(map(str, shape_data)) + "\n")
        for row in shape_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.write('\t'.join(map(str, color_header)) + "\n")
        result.write('\t'.join(map(str, color_data)) + "\n")
        result.write('\t'.join(map(str, boundary_header)) + "\n")
        result.write('\t'.join(map(str, boundary_data)) + "\n")
        result.write('\t'.join(map(str, boundary_img)) + "\n")
        for row in color_img:
            result.write('\t'.join(map(str, row)) + "\n")
        result.close()
コード例 #30
0
def main():
    args = options()

    os.chdir(args.outdir)

    # Read RGB image
    img, path, filename = pcv.readimage(args.image, mode="native")

    # Get metadata from file name
    geno_name = filename.split("}{")
    geno_name = geno_name[5]
    geno_name = geno_name.split("_")
    geno_name = geno_name[1]

    day = filename.split("}{")
    day = day[7]
    day = day.split("_")
    day = day[1]
    day = day.split("}")
    day = day[0]

    plot = filename.split("}{")
    plot = plot[0]
    plot = plot.split("_")
    plot = plot[1]

    exp_name = filename.split("}{")
    exp_name = exp_name[1]
    exp_name = exp_name.split("_")
    exp_name = exp_name[1]

    treat_name = filename.split("}{")
    treat_name = treat_name[6]

    # Create masks using Naive Bayes Classifier and PDFs file
    masks = pcv.naive_bayes_classifier(img, args.pdfs)

    # The following code will identify the racks in the image, find the top edge, and choose a line along the edge to pick a y coordinate to trim any soil/pot pixels identified as plant material.

    # Convert RGB to HSV and extract the Value channel
    v = pcv.rgb2gray_hsv(img, 'v')

    # Threshold the Value image
    v_thresh = pcv.threshold.binary(v, 98, 255, 'light')

    # Dilate mask to fill holes
    dilate_racks = pcv.dilate(v_thresh, 2, 1)

    # Fill in small objects
    mask = np.copy(dilate_racks)
    fill_racks = pcv.fill(mask, 100000)

    #edge detection
    edges = cv2.Canny(fill_racks, 60, 180)

    #write all the straight lines from edge detection
    lines = cv2.HoughLinesP(edges,
                            rho=1,
                            theta=1 * np.pi / 180,
                            threshold=150,
                            minLineLength=50,
                            maxLineGap=15)
    N = lines.shape[0]
    for i in range(N):
        x1 = lines[i][0][0]
        y1 = lines[i][0][1]
        x2 = lines[i][0][2]
        y2 = lines[i][0][3]
        cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 2)

    # keep only horizontal lines
    N = lines.shape[0]
    tokeep = []
    for i in range(N):
        want = (abs(lines[i][0][1] - lines[i][0][3])) <= 10
        tokeep.append(want)

    lines = lines[tokeep]

    # keep only lines in lower half of image
    N = lines.shape[0]
    tokeep = []
    for i in range(N):
        want = 3100 > lines[i][0][1] > 2300
        tokeep.append(want)

    lines = lines[tokeep]

    # assign lines to positions around plants
    N = lines.shape[0]
    tokeep = []
    left = []
    mid = []
    right = []

    for i in range(N):
        leftones = lines[i][0][2] <= 2000
        left.append(leftones)

        midones = 3000 > lines[i][0][2] > 2000
        mid.append(midones)

        rightones = lines[i][0][0] >= 3300
        right.append(rightones)

    right = lines[right]
    left = lines[left]
    mid = lines[mid]

    # choose y values for right left mid adding some pixels to go about the pot (subtract because of orientation of axis)
    y_left = left[0][0][3] - 50
    y_mid = mid[0][0][3] - 50
    y_right = right[0][0][3] - 50

    # reload original image to write new lines on
    img, path, filename = pcv.readimage(args.image)

    # write horizontal lines on image
    cv2.line(img, (left[0][0][0], left[0][0][1]),
             (left[0][0][2], left[0][0][3]), (255, 255, 51), 2)
    cv2.line(img, (mid[0][0][0], mid[0][0][1]), (mid[0][0][2], mid[0][0][3]),
             (255, 255, 51), 2)
    cv2.line(img, (right[0][0][0], right[0][0][1]),
             (right[0][0][2], right[0][0][3]), (255, 255, 51), 2)

    # Add masks together
    added = masks["healthy"] + masks["necrosis"] + masks["stem"]

    # Dilate mask to fill holes
    dilate_img = pcv.dilate(added, 2, 1)

    # Fill in small objects
    mask = np.copy(dilate_img)
    fill_img = pcv.fill(mask, 400)

    ret, inverted = cv2.threshold(fill_img, 75, 255, cv2.THRESH_BINARY_INV)

    # Dilate mask to fill holes of plant
    dilate_inv = pcv.dilate(inverted, 2, 1)

    # Fill in small objects of plant
    mask2 = np.copy(dilate_inv)
    fill_plant = pcv.fill(mask2, 20)

    inverted_img = pcv.invert(fill_plant)

    # Identify objects
    id_objects, obj_hierarchy = pcv.find_objects(img, inverted_img)

    # Define ROIs
    roi_left, roi_hierarchy_left = pcv.roi.rectangle(280, 1280, 1275, 1200,
                                                     img)
    roi_mid, roi_hierarchy_mid = pcv.roi.rectangle(1900, 1280, 1275, 1200, img)
    roi_right, roi_hierarchy_right = pcv.roi.rectangle(3600, 1280, 1275, 1200,
                                                       img)

    # Decide which objects to keep
    roi_objects_left, roi_obj_hierarchy_left, kept_mask_left, obj_area_left = pcv.roi_objects(
        img, 'partial', roi_left, roi_hierarchy_left, id_objects,
        obj_hierarchy)
    roi_objects_mid, roi_obj_hierarchy_mid, kept_mask_mid, obj_area_mid = pcv.roi_objects(
        img, 'partial', roi_mid, roi_hierarchy_mid, id_objects, obj_hierarchy)
    roi_objects_right, roi_obj_hierarchy_right, kept_mask_right, obj_area_right = pcv.roi_objects(
        img, 'partial', roi_right, roi_hierarchy_right, id_objects,
        obj_hierarchy)

    # Combine objects
    obj_r, mask_r = pcv.object_composition(img, roi_objects_right,
                                           roi_obj_hierarchy_right)
    obj_m, mask_m = pcv.object_composition(img, roi_objects_mid,
                                           roi_obj_hierarchy_mid)
    obj_l, mask_l = pcv.object_composition(img, roi_objects_left,
                                           roi_obj_hierarchy_left)

    def analyze_bound_horizontal2(img,
                                  obj,
                                  mask,
                                  line_position,
                                  filename=False):

        ori_img = np.copy(img)

        # Draw line horizontal line through bottom of image, that is adjusted to user input height
        if len(np.shape(ori_img)) == 3:
            iy, ix, iz = np.shape(ori_img)
        else:
            iy, ix = np.shape(ori_img)
        size = (iy, ix)
        size1 = (iy, ix, 3)
        background = np.zeros(size, dtype=np.uint8)
        wback = np.zeros(size1, dtype=np.uint8)
        x_coor = int(ix)
        y_coor = int(iy) - int(line_position)
        rec_corner = int(iy - 2)
        rec_point1 = (1, rec_corner)
        rec_point2 = (x_coor - 2, y_coor - 2)
        cv2.rectangle(background, rec_point1, rec_point2, (255), 1)
        below_contour, below_hierarchy = cv2.findContours(
            background, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:]

        below = []
        above = []
        mask_nonzerox, mask_nonzeroy = np.nonzero(mask)
        obj_points = np.vstack((mask_nonzeroy, mask_nonzerox))
        obj_points1 = np.transpose(obj_points)

        for i, c in enumerate(obj_points1):
            xy = tuple(c)
            pptest = cv2.pointPolygonTest(below_contour[0],
                                          xy,
                                          measureDist=False)
            if pptest == 1:
                below.append(xy)
                cv2.circle(ori_img, xy, 1, (0, 0, 255))
                cv2.circle(wback, xy, 1, (0, 0, 0))
            else:
                above.append(xy)
                cv2.circle(ori_img, xy, 1, (0, 255, 0))
                cv2.circle(wback, xy, 1, (255, 255, 255))

        return wback

    ori_img = np.copy(img)

    # Draw line horizontal line through bottom of image, that is adjusted to user input height
    if len(np.shape(ori_img)) == 3:
        iy, ix, iz = np.shape(ori_img)
    else:
        iy, ix = np.shape(ori_img)

    if obj_r is not None:
        wback_r = analyze_bound_horizontal2(img, obj_r, mask_r, iy - y_right)
    if obj_m is not None:
        wback_m = analyze_bound_horizontal2(img, obj_m, mask_m, iy - y_mid)
    if obj_l is not None:
        wback_l = analyze_bound_horizontal2(img, obj_l, mask_l, iy - y_left)

    threshold_light = pcv.threshold.binary(img, 1, 1, 'dark')

    if obj_r is not None:
        fgmask_r = pcv.background_subtraction(wback_r, threshold_light)
    if obj_m is not None:
        fgmask_m = pcv.background_subtraction(wback_m, threshold_light)
    if obj_l is not None:
        fgmask_l = pcv.background_subtraction(wback_l, threshold_light)

    if obj_l is not None:
        id_objects_left, obj_hierarchy_left = pcv.find_objects(img, fgmask_l)
    if obj_m is not None:
        id_objects_mid, obj_hierarchy_mid = pcv.find_objects(img, fgmask_m)
    if obj_r is not None:
        id_objects_right, obj_hierarchy_right = pcv.find_objects(img, fgmask_r)

    # Combine objects
    if obj_r is not None:
        obj_r2, mask_r2 = pcv.object_composition(img, id_objects_right,
                                                 obj_hierarchy_right)
    if obj_m is not None:
        obj_m2, mask_m2 = pcv.object_composition(img, id_objects_mid,
                                                 obj_hierarchy_mid)
    if obj_l is not None:
        obj_l2, mask_l2 = pcv.object_composition(img, id_objects_left,
                                                 obj_hierarchy_left)

    # Shape measurements
    if obj_l is not None:
        shape_header_left, shape_data_left, shape_img_left = pcv.analyze_object(
            img, obj_l2, fgmask_l,
            geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' + 'shape.jpg')

    if obj_r is not None:
        shape_header_right, shape_data_right, shape_img_right = pcv.analyze_object(
            img, obj_r2, fgmask_r,
            geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' + 'shape.jpg')

    if obj_m is not None:
        shape_header_mid, shape_data_mid, shape_img_mid = pcv.analyze_object(
            img, obj_m2, fgmask_m,
            geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' + 'shape.jpg')

    # Color data
    if obj_r is not None:
        color_header_right, color_data_right, norm_slice_right = pcv.analyze_color(
            img, fgmask_r, 256, None, 'v', 'img',
            geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' + 'color.jpg')

    if obj_m is not None:
        color_header_mid, color_data_mid, norm_slice_mid = pcv.analyze_color(
            img, fgmask_m, 256, None, 'v', 'img',
            geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' + 'color.jpg')

    if obj_l is not None:
        color_header_left, color_data_left, norm_slice_left = pcv.analyze_color(
            img, fgmask_l, 256, None, 'v', 'img',
            geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' + 'color.jpg')

    new_header = [
        'experiment', 'day', 'genotype', 'treatment', 'plot', 'plant',
        'percent.necrosis', 'area', 'hull-area', 'solidity', 'perimeter',
        'width', 'height', 'longest_axis', 'center-of-mass-x',
        'center-of-mass-y', 'hull_vertices', 'in_bounds', 'ellipse_center_x',
        'ellipse_center_y', 'ellipse_major_axis', 'ellipse_minor_axis',
        'ellipse_angle', 'ellipse_eccentricity', 'bin-number', 'bin-values',
        'blue', 'green', 'red', 'lightness', 'green-magenta', 'blue-yellow',
        'hue', 'saturation', 'value'
    ]
    table = []
    table.append(new_header)

    added2 = masks["healthy"] + masks["stem"]

    # Object combine kept objects
    if obj_l is not None:
        masked_image_healthy_left = pcv.apply_mask(added2, fgmask_l, 'black')
        masked_image_necrosis_left = pcv.apply_mask(masks["necrosis"],
                                                    fgmask_l, 'black')
        added_obj_left = masked_image_healthy_left + masked_image_necrosis_left

        sample = "A"

        # Calculations
        necrosis_left = np.sum(masked_image_necrosis_left)
        necrosis_percent_left = float(necrosis_left) / np.sum(added_obj_left)

        table.append([
            exp_name, day, geno_name, treat_name, plot, sample,
            round(necrosis_percent_left, 5), shape_data_left[1],
            shape_data_left[2], shape_data_left[3], shape_data_left[4],
            shape_data_left[5], shape_data_left[6], shape_data_left[7],
            shape_data_left[8], shape_data_left[9], shape_data_left[10],
            shape_data_left[11], shape_data_left[12], shape_data_left[13],
            shape_data_left[14], shape_data_left[15], shape_data_left[16],
            shape_data_left[17], '"{}"'.format(color_data_left[1]),
            '"{}"'.format(color_data_left[2]), '"{}"'.format(
                color_data_left[3]), '"{}"'.format(color_data_left[4]),
            '"{}"'.format(color_data_left[5]), '"{}"'.format(
                color_data_left[6]), '"{}"'.format(color_data_left[7]),
            '"{}"'.format(color_data_left[8]), '"{}"'.format(
                color_data_left[9]), '"{}"'.format(color_data_left[10]),
            '"{}"'.format(color_data_left[11])
        ])

    # Object combine kept objects
    if obj_m is not None:
        masked_image_healthy_mid = pcv.apply_mask(added2, fgmask_m, 'black')
        masked_image_necrosis_mid = pcv.apply_mask(masks["necrosis"], fgmask_m,
                                                   'black')
        added_obj_mid = masked_image_healthy_mid + masked_image_necrosis_mid

        sample = "B"

        # Calculations
        necrosis_mid = np.sum(masked_image_necrosis_mid)
        necrosis_percent_mid = float(necrosis_mid) / np.sum(added_obj_mid)

        table.append([
            exp_name, day, geno_name, treat_name, plot, sample,
            round(necrosis_percent_mid,
                  5), shape_data_mid[1], shape_data_mid[2], shape_data_mid[3],
            shape_data_mid[4], shape_data_mid[5], shape_data_mid[6],
            shape_data_mid[7], shape_data_mid[8], shape_data_mid[9],
            shape_data_mid[10], shape_data_mid[11], shape_data_mid[12],
            shape_data_mid[13], shape_data_mid[14], shape_data_mid[15],
            shape_data_mid[16], shape_data_mid[17],
            '"{}"'.format(color_data_mid[1]), '"{}"'.format(color_data_mid[2]),
            '"{}"'.format(color_data_mid[3]), '"{}"'.format(color_data_mid[4]),
            '"{}"'.format(color_data_mid[5]), '"{}"'.format(color_data_mid[6]),
            '"{}"'.format(color_data_mid[7]), '"{}"'.format(color_data_mid[8]),
            '"{}"'.format(color_data_mid[9]), '"{}"'.format(
                color_data_mid[10]), '"{}"'.format(color_data_mid[11])
        ])

    # Object combine kept objects
    if obj_r is not None:
        masked_image_healthy_right = pcv.apply_mask(added2, fgmask_r, 'black')
        masked_image_necrosis_right = pcv.apply_mask(masks["necrosis"],
                                                     fgmask_r, 'black')
        added_obj_right = masked_image_healthy_right + masked_image_necrosis_right

        sample = "C"

        # Calculations
        necrosis_right = np.sum(masked_image_necrosis_right)
        necrosis_percent_right = float(necrosis_right) / np.sum(
            added_obj_right)

        table.append([
            exp_name, day, geno_name, treat_name, plot, sample,
            round(necrosis_percent_right, 5), shape_data_right[1],
            shape_data_right[2], shape_data_right[3], shape_data_right[4],
            shape_data_right[5], shape_data_right[6], shape_data_right[7],
            shape_data_right[8], shape_data_right[9], shape_data_right[10],
            shape_data_right[11], shape_data_right[12], shape_data_right[13],
            shape_data_right[14], shape_data_right[15], shape_data_right[16],
            shape_data_right[17], '"{}"'.format(color_data_right[1]),
            '"{}"'.format(color_data_right[2]), '"{}"'.format(
                color_data_right[3]), '"{}"'.format(color_data_right[4]),
            '"{}"'.format(color_data_right[5]), '"{}"'.format(
                color_data_right[6]), '"{}"'.format(color_data_right[7]),
            '"{}"'.format(color_data_right[8]), '"{}"'.format(
                color_data_right[9]), '"{}"'.format(color_data_right[10]),
            '"{}"'.format(color_data_right[11])
        ])

    if obj_l is not None:
        merged2 = cv2.merge([
            masked_image_healthy_left,
            np.zeros(np.shape(masks["healthy"]), dtype=np.uint8),
            masked_image_necrosis_left
        ])  #blue, green, red
        pcv.print_image(
            merged2, geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' +
            'merged.jpg')
    if obj_m is not None:
        merged3 = cv2.merge([
            masked_image_healthy_mid,
            np.zeros(np.shape(masks["healthy"]), dtype=np.uint8),
            masked_image_necrosis_mid
        ])  #blue, green, red
        pcv.print_image(
            merged3, geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' +
            'merged.jpg')
    if obj_r is not None:
        merged4 = cv2.merge([
            masked_image_healthy_right,
            np.zeros(np.shape(masks["healthy"]), dtype=np.uint8),
            masked_image_necrosis_right
        ])  #blue, green, red
        pcv.print_image(
            merged4, geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' +
            'merged.jpg')

    # Save area results to file (individual csv files for one image...)
    file_name = filename.split("}{")
    file_name = file_name[0] + "}{" + file_name[5] + "}{" + file_name[7]

    outfile = str(file_name[:-4]) + 'csv'
    with open(outfile, 'w') as f:
        for row in table:
            f.write(','.join(map(str, row)) + '\n')

    print(filename)
コード例 #31
0
def main():
    # Get options
    args = options()

    debug = args.debug

    # Read image
    img, path, filename = pcv.readimage(args.image)

    # Pipeline step
    device = 0

    device, img1 = pcv.white_balance(device, img, debug,
                                     (100, 100, 1000, 1000))
    img = img1

    #seedmask, path1, filename1 = pcv.readimage(args.mask)
    #device, seedmask = pcv.rgb2gray(seedmask, device, debug)
    #device, inverted = pcv.invert(seedmask, device, debug)
    #device, masked_img = pcv.apply_mask(img, inverted, 'white', device, debug)

    device, img_gray_sat = pcv.rgb2gray_hsv(img1, 's', device, debug)

    device, img_binary = pcv.binary_threshold(img_gray_sat, 70, 255, 'light',
                                              device, debug)

    img_binary1 = np.copy(img_binary)
    device, fill_image = pcv.fill(img_binary1, img_binary, 300, device, debug)

    device, seed_objects, seed_hierarchy = pcv.find_objects(
        img, fill_image, device, debug)

    device, roi1, roi_hierarchy1 = pcv.define_roi(img, 'rectangle', device,
                                                  None, 'default', debug, True,
                                                  1500, 1000, -1000, -500)

    device, roi_objects, roi_obj_hierarchy, kept_mask, obj_area = pcv.roi_objects(
        img, 'partial', roi1, roi_hierarchy1, seed_objects, seed_hierarchy,
        device, debug)

    img_copy = np.copy(img)
    for i in range(0, len(roi_objects)):
        rand_color = pcv.color_palette(1)
        cv2.drawContours(img_copy,
                         roi_objects,
                         i,
                         rand_color[0],
                         -1,
                         lineType=8,
                         hierarchy=roi_obj_hierarchy)

    pcv.print_image(
        img_copy,
        os.path.join(args.outdir, filename[:-4]) + "-seed-confetti.jpg")

    shape_header = []  # Store the table header
    table = []  # Store the PlantCV measurements for each seed in a table
    for i in range(0, len(roi_objects)):
        if roi_obj_hierarchy[0][i][
                3] == -1:  # Only continue if the object is an outermost contour

            # Object combine kept objects
            # Inputs:
            #    contours = object list
            #    device   = device number. Used to count steps in the pipeline
            #    debug    = None, print, or plot. Print = save to file, Plot = print to screen.
            device, obj, mask = pcv.object_composition(
                img, [roi_objects[i]], np.array([[roi_obj_hierarchy[0][i]]]),
                device, None)
            if obj is not None:
                # Measure the area and other shape properties of each seed
                # Inputs:
                #    img             = image object (most likely the original), color(RGB)
                #    imgname         = name of image
                #    obj             = single or grouped contour object
                #    device          = device number. Used to count steps in the pipeline
                #    debug           = None, print, or plot. Print = save to file, Plot = print to screen.
                #    filename        = False or image name. If defined print image
                device, shape_header, shape_data, shape_img = pcv.analyze_object(
                    img, "img", obj, mask, device, None)

                if shape_data is not None:
                    table.append(shape_data[1])

    data_array = np.array(table)
    maxval = np.argmax(data_array)
    maxseed = np.copy(img)
    cv2.drawContours(maxseed, roi_objects, maxval, (0, 255, 0), 10)

    imgtext = "This image has " + str(len(data_array)) + " seeds"
    sizeseed = "The largest seed is in green and is " + str(
        data_array[maxval]) + " pixels"
    cv2.putText(maxseed, imgtext, (500, 300), cv2.FONT_HERSHEY_SIMPLEX, 5,
                (0, 0, 0), 10)
    cv2.putText(maxseed, sizeseed, (500, 600), cv2.FONT_HERSHEY_SIMPLEX, 5,
                (0, 0, 0), 10)
    pcv.print_image(maxseed,
                    os.path.join(args.outdir, filename[:-4]) + "-maxseed.jpg")