def calculation(image, img_path): PIL_image = Image.fromarray(np.uint8(image)).convert('RGB') invert_im = ImageOps.invert(PIL_image) # invert image (so that white is 0) imageBox = invert_im.getbbox() cropped = PIL_image.crop(imageBox) image = np.asanyarray(cropped) s = pcv.rgb2gray_hsv(rgb_img=image, channel='s') s_thresh = pcv.threshold.binary(gray_img=s, threshold=150, max_value=255, object_type='light') area = get_area(s_thresh, s_thresh.shape[0]) output_path_area = os.path.dirname(img_path) + "/" + os.path.basename( img_path) + "_area.jpg" imsave(output_path_area, s_thresh) img2 = np.copy(image) img2[s_thresh == 0] = 0 health = get_area(img2[:, :, 1], s_thresh.shape[0]) output_path_health = os.path.dirname(img_path) + "/" + os.path.basename( img_path) + "_health.jpg" imsave(output_path_health, img2[:, :, 1]) results = {"healthy_size": health, "size": area} return (results)
def plant_cv(img): counter = 0 debug = None counter, s = pcv.rgb2gray_hsv(img, 's', counter, debug) counter, s_thresh = pcv.binary_threshold(s, 145, 255, 'light', counter, debug) counter, s_mblur = pcv.median_blur(s_thresh, 5, counter, debug) # Convert RGB to LAB and extract the Blue channel counter, b = pcv.rgb2gray_lab(img, 'b', counter, debug) # Threshold the blue image counter, b_thresh = pcv.binary_threshold(b, 145, 255, 'light', counter, debug) counter, b_cnt = pcv.binary_threshold(b, 145, 255, 'light', counter, debug) # Join the thresholded saturation and blue-yellow images counter, bs = pcv.logical_or(s_mblur, b_cnt, counter, debug) counter, masked = pcv.apply_mask(img, bs, 'white', counter, debug) #---------------------------------------- # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels counter, masked_a = pcv.rgb2gray_lab(masked, 'a', counter, debug) counter, masked_b = pcv.rgb2gray_lab(masked, 'b', counter, debug) # Threshold the green-magenta and blue images counter, maskeda_thresh = pcv.binary_threshold(masked_a, 115, 255, 'dark', counter, debug) counter, maskeda_thresh1 = pcv.binary_threshold(masked_a, 135, 255, 'light', counter, debug) counter, maskedb_thresh = pcv.binary_threshold(masked_b, 128, 255, 'light', counter, debug) # Join the thresholded saturation and blue-yellow images (OR) counter, ab1 = pcv.logical_or(maskeda_thresh, maskedb_thresh, counter, debug) counter, ab = pcv.logical_or(maskeda_thresh1, ab1, counter, debug) counter, ab_cnt = pcv.logical_or(maskeda_thresh1, ab1, counter, debug) # Fill small objects counter, ab_fill = pcv.fill(ab, ab_cnt, 200, counter, debug) # Apply mask (for vis images, mask_color=white) counter, masked2 = pcv.apply_mask(masked, ab_fill, 'white', counter, debug) zeros = np.zeros(masked2.shape[:2], dtype="uint8") merged = cv2.merge([zeros, ab_fill, zeros]) return merged, masked2
def generate_plant_mask_new(input_image): ''' Generate a mask which segments the plant out in the input image Ref: https://plantcv.readthedocs.io/en/latest/vis_tutorial/ Args: input_image: the input image Returns: mask: boolean numpy array as the same size of the input image which segments the plant ''' # Get the saturation channel # hsv_image = rgb2hsv(input_image) # s = hsv_image[:,:,1] s = pcv.rgb2gray_hsv(rgb_img=input_image, channel='s') # threshold the saturation image s_thresh = s > 130 # perform blur on the thresholding # s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=15) # extract the LAb channels and theshold them b = pcv.rgb2gray_lab(rgb_img=input_image, channel='b') a = pcv.rgb2gray_lab(rgb_img=input_image, channel='a') a_thresh = a <= 120 b_thresh = b >= 105 lab_mask = np.logical_and(a_thresh, b_thresh) lab_cnt = pcv.median_blur(gray_img=lab_mask, ksize=15) # join the two thresholdes mask bs = np.logical_and(s_cnt, lab_cnt) # filling small holes res = np.ones(bs.shape, dtype=np.uint8) * 255 res[bs] = 0 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15)) res = cv2.morphologyEx(res, cv2.MORPH_OPEN, kernel) res = res == 0 return res
def read_true_positive(true_positive_file): class args: #image = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\0214_2018-03-07 08.55 - 26_true_positive.png" image = true_positive_file outdir = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\output" debug = "None" result = "results.txt" # Get options pcv.params.debug = args.debug #set debug mode pcv.params.debug_outdir = args.outdir #set output directory # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb') # Inputs: # filename - Image file to be read in # mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv' img, path, filename = pcv.readimage(filename=args.image, mode='rgb') s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[10], upper_thresh=[255], channel='gray') masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white') #new_im = Image.fromarray(mask) #name = "positive_test.png" #Recognizing objects id_objects, obj_hierarchy = pcv.find_objects(masked, mask) roi1, roi_hierarchy = pcv.roi.rectangle(img=masked, x=0, y=0, h=960, w=1280) # Currently hardcoded with HiddenPrints(): roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type=roi_type) obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) #new_im.save(name) return (mask)
def plot_hotspots(directory, filename): # Read image in_full_path = os.path.join(directory, filename) outfile = 'Hotspot' + filename out_full_path = os.path.join(directory, outfile) img, path, filename = pcv.readimage(in_full_path, mode="rgb") # Convert RGB to HSV and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) edge = cv2.Canny(s_mblur, 60, 180) fig, ax = plt.subplots(1, figsize=(12, 8)) plt.imshow(edge, cmap='Greys') contours, hierarchy = cv2.findContours(edge.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] centroids = [] contours = sorted(contours, key=cv2.contourArea, reverse=True) for i, cnt in enumerate(contours): if (cv2.contourArea(cnt) > 10): moment = cv2.moments(contours[i]) Cx = int(moment["m10"] / moment["m00"]) Cy = int(moment["m01"] / moment["m00"]) center = (Cx, Cy) centroids.append((contours, center, moment["m00"], 0)) cv2.circle(img, (Cx, Cy), 5, (255, 255, 255), -1) coordinate = '(' + str(Cx) + ',' + str(Cy) + ')' cv2.putText(img, coordinate, (Cx, Cy), cv2.FONT_HERSHEY_SIMPLEX, 0.5, RED, 1, cv2.LINE_AA) print(cv2.contourArea(cnt), Cx, Cy) cv2.imwrite(out_full_path, img) #cv2.imshow('canvasOutput', img); #cv2.waitKey(0) return
def main(): # Get options args = options() pcv.params.debug = args.debug # set debug mode pcv.params.debug_outdir = args.outdir # set output directory # Read image img, path, filename = pcv.readimage(filename=args.image) # Convert RGB to HSV and extract the saturation channel h = pcv.rgb2gray_hsv(rgb_img=img, channel='h') # Threshold the saturation image h_thresh = pcv.threshold.binary(gray_img=h, threshold=85, max_value=255, object_type='dark') # Median Blur h_mblur = pcv.median_blur(gray_img=h_thresh, ksize=20)
# In[ ]: # This command outputs all resulting images to the notebook. pcv.params.debug = 'plot' # In[6]: # Importing the image. Including the path was necessary. Mode="native" by default. img, path, img_filename = pcv.readimage( filename="/users/jordanmanchengo/data/duckweed1.png") # In[11]: # Hue channel. h = pcv.rgb2gray_hsv(rgb_img=img, channel='h') # In[12]: # Saturation channel. s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # In[13]: # Value channel. v = pcv.rgb2gray_hsv(rgb_img=img, channel='v') # In[14]: # Setting a saturation threshold on "light" objects to create sharp contrast. s_thresh = pcv.threshold.binary(gray_img=s,
def plantCVProcess(img, x, y, w, h): # Convert RGB to HSV and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Threshold the blue image b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') b_cnt = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') # Fill small objects # b_fill = pcv.fill(b_thresh, 10) # Join the thresholded saturation and blue-yellow images bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt) # Apply Mask (for VIS images, mask_color=white) masked = pcv.apply_mask(img=img, mask=bs, mask_color='white') # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images (OR) ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Fill small objects ab_fill = pcv.fill(bin_img=ab, size=200) # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white') # Identify objects id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill) # Define ROI roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2, x=x, y=y, h=h, w=w) # Decide which objects to keep roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') # Object combine kept objects obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) ############### Analysis ################ # Find shape properties, output shape image (optional) shape_imgs = pcv.analyze_object(img=img, obj=obj, mask=mask) # Shape properties relative to user boundary line (optional) boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680) # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional) color_histogram = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='all') # Pseudocolor the grayscale image pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s, mask=mask, cmap='jet') return print_results()
client.connect(server, username = sshuser, pkey = mykey) client.get_transport().window_size = 3 * 1024 * 1024 pcv.params.debug = 'none' sftp = client.open_sftp() with sftp.open('/plantdb/ftp-2019/{dbname}/{path}'.format(dbname=dbname,path=path)) as f: file_size = f.stat().st_size f.prefetch(file_size) img = cv2.imdecode(np.frombuffer(f.read(file_size), np.uint8), 1) # Convert RGB to HSV and extract the value channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='v') # Threshold the saturation image removing highs and lows and join s_thresh_1 = pcv.threshold.binary(gray_img=s, threshold=10, max_value=255, object_type='light') s_thresh_2 = pcv.threshold.binary(gray_img=s, threshold=245, max_value=255, object_type='dark') s_thresh = pcv.logical_and(bin_img1=s_thresh_1, bin_img2=s_thresh_2) # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Threshold the blue image b_cnt = pcv.threshold.binary(gray_img=b, threshold=128, max_value=255, object_type='light')
# ir_ir = frames.get_infrared() # cv2.imshow('aligned', ir_ir) # aligned_depth_color_frame = rs.colorizer().colorize(aligned_depth_frame) # aligned_depth_color_image = np.asanyarray(aligned_depth_color_frame.get_data()) # cv2.imshow('aligned', aligned_depth_color_image) # Validate that both frames are valid if not aligned_depth_frame or not color_frame: continue depth_image = np.asanyarray(aligned_depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) s = pcv.rgb2gray_hsv(color_image, 's') # plantcv s_thresh = pcv.threshold.binary(s, 85, 255, 'light') # plantcv s_mblur = pcv.median_blur(s_thresh, 5) s_cnt = pcv.median_blur(s_thresh, 5) # cv2.imshow('color - depth3', s_mblur) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(color_image, 'b') # Threshold the blue image b_thresh = pcv.threshold.binary(b, 160, 255, 'light') b_cnt = pcv.threshold.binary(b, 160, 255, 'light') # Fill small objects # b_fill = pcv.fill(b_thresh, 10) mask = pcv.naive_bayes_classifier(color_image, "naive_bayes_pdfs.txt") #histogram_low = np.sum(mask["plant"][int(360/2):, :], axis=0)
def main(): # Get options args = options() # Set variables pcv.params.debug = args.debug # Replace the hard-coded debug with the debug flag pcv.params.debug_outdir = args.outdir # set output directory ### Main pipeline ### # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb') img, path, filename = pcv.readimage(args.image, mode='rgb') # Read reference image for colour correction (currently unused) #ref_img, ref_path, ref_filename = pcv.readimage( # "/home/leonard/Dropbox/2020-01_LAC_phenotyping/images/top/renamed/20200128_2.jpg", # mode="rgb") # Find colour cards #df, start, space = pcv.transform.find_color_card(rgb_img=ref_img) #ref_mask = pcv.transform.create_color_card_mask(rgb_img=ref_img, radius=10, start_coord=start, spacing=space, ncols=4, nrows=6) df, start, space = pcv.transform.find_color_card(rgb_img=img) img_mask = pcv.transform.create_color_card_mask(rgb_img=img, radius=10, start_coord=start, spacing=space, ncols=4, nrows=6) output_directory = "." # Correct colour (currently unused) #target_matrix, source_matrix, transformation_matrix, corrected_img = pcv.transform.correct_color(ref_img, ref_mask, img, img_mask, output_directory) # Check that the colour correction worked (source~target should be strictly linear) #pcv.transform.quick_color_check(source_matrix = source_matrix, target_matrix = target_matrix, num_chips = 24) # Write the spacing of the colour card to file as size marker with open(os.path.join(path, 'output/size_marker_trays.csv'), 'a') as f: writer = csv.writer(f) writer.writerow([filename, space[0]]) ### Crop tray ### # Define a bounding rectangle around the colour card x_cc, y_cc, w_cc, h_cc = cv2.boundingRect(img_mask) x_cc = int(round(x_cc - 0.3 * w_cc)) y_cc = int(round(y_cc - 0.3 * h_cc)) h_cc = int(round(h_cc * 1.6)) w_cc = int(round(w_cc * 1.6)) # Crop out colour card start_point = (x_cc, y_cc) end_point = (x_cc + w_cc, y_cc + h_cc) colour = (0, 0, 0) thickness = -1 card_crop_img = cv2.rectangle(img, start_point, end_point, colour, thickness) # Convert RGB to HSV and extract the value channel v = pcv.rgb2gray_hsv(card_crop_img, "v") # Threshold the value image v_thresh = pcv.threshold.binary( v, 100, 255, "light" ) # start threshold at 150 with bright corner-markers, 100 without # Fill out bright imperfections (siliques and other dirt on the background) v_thresh = pcv.fill( v_thresh, 100) # fill at 500 with bright corner-markers, 100 without # Create bounding rectangle around the tray x, y, w, h = cv2.boundingRect(v_thresh) # Crop image to tray #crop_img = card_crop_img[y:y+h, x:x+int(w - (w * 0.03))] # crop extra 3% from right because of tray labels crop_img = card_crop_img[y:y + h, x:x + w] # crop symmetrically # Save cropped image for quality control pcv.print_image(crop_img, filename=path + "/output/" + "cropped" + filename + ".png") ### Threshold plants ### # Threshold the green-magenta, blue, and hue channels a_thresh, _ = pcv.threshold.custom_range(img=crop_img, lower_thresh=[0, 0, 0], upper_thresh=[255, 108, 255], channel='LAB') b_thresh, _ = pcv.threshold.custom_range(img=crop_img, lower_thresh=[0, 0, 135], upper_thresh=[255, 255, 255], channel='LAB') h_thresh, _ = pcv.threshold.custom_range(img=crop_img, lower_thresh=[35, 0, 0], upper_thresh=[70, 255, 255], channel='HSV') # Join the thresholds (AND) ab = pcv.logical_and(b_thresh, a_thresh) abh = pcv.logical_and(ab, h_thresh) # Fill small objects depending on expected plant size based on DPG (make sure to take the correct file suffix jpg/JPG/jpeg...) match = re.search("(\d+).(\d)\.jpg$", filename) if int(match.group(1)) < 10: abh_clean = pcv.fill(abh, 50) print("50") elif int(match.group(1)) < 15: abh_clean = pcv.fill(abh, 200) print("200") else: abh_clean = pcv.fill(abh, 500) print("500") # Dilate to close broken borders abh_dilated = pcv.dilate(abh_clean, 3, 1) # Close holes # abh_fill = pcv.fill_holes(abh_dilated) # silly -- removed abh_fill = abh_dilated # Apply mask (for VIS images, mask_color=white) masked = pcv.apply_mask(crop_img, abh_fill, "white") # Save masked image for quality control pcv.print_image(masked, filename=path + "/output/" + "masked" + filename + ".png") ### Filter and group contours ### # Identify objects id_objects, obj_hierarchy = pcv.find_objects(crop_img, abh_fill) # Create bounding box with margins to avoid border artifacts roi_y = 0 + crop_img.shape[0] * 0.05 roi_x = 0 + crop_img.shape[0] * 0.05 roi_h = crop_img.shape[0] - (crop_img.shape[0] * 0.1) roi_w = crop_img.shape[1] - (crop_img.shape[0] * 0.1) roi_contour, roi_hierarchy = pcv.roi.rectangle(crop_img, roi_y, roi_x, roi_h, roi_w) # Keep all objects in the bounding box roi_objects, roi_obj_hierarchy, kept_mask, obj_area = pcv.roi_objects( img=crop_img, roi_type='partial', roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy) # Cluster the objects by plant clusters, contours, hierarchies = pcv.cluster_contours( crop_img, roi_objects, roi_obj_hierarchy, 3, 5) # Split image into single plants out = args.outdir #output_path, imgs, masks = pcv.cluster_contour_splitimg(crop_img, # clusters, # contours, # hierarchies, # out, # file = filename) ### Analysis ### # Approximate the position of the top left plant as grid start coord_y = int( round(((crop_img.shape[0] / 3) * 0.5) + (crop_img.shape[0] * 0.025))) coord_x = int( round(((crop_img.shape[1] / 5) * 0.5) + (crop_img.shape[1] * 0.025))) # Set the ROI spacing relative to image dimensions spc_y = int((round(crop_img.shape[0] - (crop_img.shape[0] * 0.05)) / 3)) spc_x = int((round(crop_img.shape[1] - (crop_img.shape[1] * 0.05)) / 5)) # Set the ROI radius relative to image width if int(match.group(1)) < 16: r = int(round(crop_img.shape[1] / 12.5)) else: r = int(round(crop_img.shape[1] / 20)) # Make a grid of ROIs at the expected positions of plants # This allows for gaps due to dead/not germinated plants, without messing up the plant numbering imgs, masks = pcv.roi.multi(img=crop_img, nrows=3, ncols=5, coord=(coord_x, coord_y), radius=r, spacing=(spc_x, spc_y)) # Loop through the ROIs in the grid for i in range(0, len(imgs)): # Find objects within the ROI filtered_contours, filtered_hierarchy, filtered_mask, filtered_area = pcv.roi_objects( img=crop_img, roi_type="partial", roi_contour=imgs[i], roi_hierarchy=masks[i], object_contour=id_objects, obj_hierarchy=obj_hierarchy) # Continue only if not empty if len(filtered_contours) > 0: # Combine objects within each ROI plant_contour, plant_mask = pcv.object_composition( img=crop_img, contours=filtered_contours, hierarchy=filtered_hierarchy) # Analyse the shape of each plant analysis_images = pcv.analyze_object(img=crop_img, obj=plant_contour, mask=plant_mask) pcv.print_image(analysis_images, filename=path + "/output/" + filename + "_" + str(i) + "_analysed.png") # Determine color properties color_images = pcv.analyze_color(crop_img, plant_mask, "hsv") # Watershed plant area to count leaves (computationally intensive, use when needed) #watershed_images = pcv.watershed_segmentation(crop_img, plant_mask, 15) # Print out a .json file with the analysis data for the plant pcv.outputs.save_results(filename=path + "/" + filename + "_" + str(i) + '.json') # Clear the measurements stored globally into the Ouptuts class pcv.outputs.clear()
def main(): # Initialize options args = options() # Set PlantCV debug mode to input debug method pcv.params.debug = args.debug # Use PlantCV to read in the input image. The function outputs an image as a NumPy array, the path to the file, # and the image filename img, path, filename = pcv.readimage(filename=args.image) # ## Segmentation # ### Saturation channel # Convert the RGB image to HSV colorspace and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Use a binary threshold to set an inflection value where all pixels in the grayscale saturation image below the # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white) s_thresh = pcv.threshold.binary(gray_img=s, threshold=80, max_value=255, object_type='light') # ### Blue-yellow channel # Convert the RGB image to LAB colorspace and extract the blue-yellow channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Use a binary threshold to set an inflection value where all pixels in the grayscale blue-yellow image below the # threshold get set to zero (pure black) and all pixels at or above the threshold get set to 255 (pure white) b_thresh = pcv.threshold.binary(gray_img=b, threshold=134, max_value=255, object_type='light') # ### Green-magenta channel # Convert the RGB image to LAB colorspace and extract the green-magenta channel a = pcv.rgb2gray_lab(rgb_img=img, channel='a') # In the green-magenta image the plant pixels are darker than the background. Setting object_type="dark" will # invert the image first and then use a binary threshold to set an inflection value where all pixels in the # grayscale green-magenta image below the threshold get set to zero (pure black) and all pixels at or above the # threshold get set to 255 (pure white) a_thresh = pcv.threshold.binary(gray_img=a, threshold=122, max_value=255, object_type='dark') # Combine the binary images for the saturation and blue-yellow channels. The "or" operator returns a binary image # that is white when a pixel was white in either or both input images bs = pcv.logical_or(bin_img1=s_thresh, bin_img2=b_thresh) # Combine the binary images for the combined saturation and blue-yellow channels and the green-magenta channel. # The "or" operator returns a binary image that is white when a pixel was white in either or both input images bsa = pcv.logical_or(bin_img1=bs, bin_img2=a_thresh) # The combined binary image labels plant pixels well but the background still has pixels labeled as foreground. # Small white noise (salt) in the background can be removed by filtering white objects in the image by size and # setting a size threshold where smaller objects can be removed bsa_fill1 = pcv.fill(bin_img=bsa, size=15) # Fill small noise # Before more stringent size filtering is done we want to connect plant parts that may still be disconnected from # the main plant. Use a dilation to expand the boundary of white regions. Ksize is the size of a box scanned # across the image and i is the number of times a scan is done bsa_fill2 = pcv.dilate(gray_img=bsa_fill1, ksize=3, i=3) # Remove small objects by size again but use a higher threshold bsa_fill3 = pcv.fill(bin_img=bsa_fill2, size=250) # Use the binary image to identify objects or connected components. id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=bsa_fill3) # Because the background still contains pixels labeled as foreground, the object list contains background. # Because these images were collected in an automated system the plant is always centered in the image at the # same position each time. Define a region of interest (ROI) to set the area where we expect to find plant # pixels. PlantCV can make simple ROI shapes like rectangles, circles, etc. but here we use a custom ROI to fit a # polygon around the plant area roi_custom, roi_hier_custom = pcv.roi.custom(img=img, vertices=[[1085, 1560], [1395, 1560], [1395, 1685], [1890, 1744], [1890, 25], [600, 25], [615, 1744], [1085, 1685]]) # Use the ROI to filter out objects found outside the ROI. When `roi_type = "cutto"` objects outside the ROI are # cropped out. The default `roi_type` is "partial" which allows objects to overlap the ROI and be retained roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi_custom, roi_hierarchy=roi_hier_custom, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='cutto') # Filter remaining objects by size again to remove any remaining background objects filled_mask1 = pcv.fill(bin_img=kept_mask, size=350) # Use a closing operation to first dilate (expand) and then erode (shrink) the plant to fill in any additional # gaps in leaves or stems filled_mask2 = pcv.closing(gray_img=filled_mask1) # Remove holes or dark spot noise (pepper) in the plant binary image filled_mask3 = pcv.fill_holes(filled_mask2) # With the clean binary image identify the contour of the plant id_objects, obj_hierarchy = pcv.find_objects(img=img, mask=filled_mask3) # Because a plant or object of interest may be composed of multiple contours, it is required to combine all # remaining contours into a single contour before measurements can be done obj, mask = pcv.object_composition(img=img, contours=id_objects, hierarchy=obj_hierarchy) # ## Measurements PlantCV has several built-in measurement or analysis methods. Here, basic measurements of size # and shape are done. Additional typical modules would include plant height (`pcv.analyze_bound_horizontal`) and # color (`pcv.analyze_color`) shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask) # Save the shape image if requested if args.writeimg: outfile = os.path.join(args.outdir, filename[:-4] + "_shapes.png") pcv.print_image(img=shape_img, filename=outfile) # ## Morphology workflow # Update a few PlantCV parameters for plotting purposes pcv.params.text_size = 1.5 pcv.params.text_thickness = 5 pcv.params.line_thickness = 15 # Convert the plant mask into a "skeletonized" image where each path along the stem and leaves are a single pixel # wide skel = pcv.morphology.skeletonize(mask=mask) # Sometimes wide parts of leaves or stems are skeletonized in the direction perpendicular to the main path. These # "barbs" or "spurs" can be removed by pruning the skeleton to remove small paths. Pruning will also separate the # individual path segments (leaves and stem parts) pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=skel, size=30, mask=mask) pruned, segmented_img, segment_objects = pcv.morphology.prune(skel_img=pruned, size=3, mask=mask) # Leaf and stem segments above are separated but only into individual paths. We can sort the segments into stem # and leaf paths by identifying primary segments (stems; those that end in a branch point) and secondary segments # (leaves; those that begin at a branch point and end at a tip point) leaf_objects, other_objects = pcv.morphology.segment_sort(skel_img=pruned, objects=segment_objects, mask=mask) # Label the segment unique IDs segmented_img, labeled_id_img = pcv.morphology.segment_id(skel_img=pruned, objects=leaf_objects, mask=mask) # Measure leaf insertion angles. Measures the angle between a line fit through the stem paths and a line fit # through the first `size` points of each leaf path labeled_angle_img = pcv.morphology.segment_insertion_angle(skel_img=pruned, segmented_img=segmented_img, leaf_objects=leaf_objects, stem_objects=other_objects, size=22) # Save leaf angle image if requested if args.writeimg: outfile = os.path.join(args.outdir, filename[:-4] + "_leaf_insertion_angles.png") pcv.print_image(img=labeled_angle_img, filename=outfile) # ## Other potential morphological measurements There are many other functions that extract data from within the # morphology sub-package of PlantCV. For our purposes, we are most interested in the relative angle between each # leaf and the stem which we measure with `plantcv.morphology.segment_insertion_angle`. However, the following # cells show some of the other traits that we are able to measure from images that can be succesfully sorted into # primary and secondary segments. # Segment the plant binary mask using the leaf and stem segments. Allows for the measurement of individual leaf # areas # filled_img = pcv.morphology.fill_segments(mask=mask, objects=leaf_objects) # Measure the path length of each leaf (geodesic distance) # labeled_img2 = pcv.morphology.segment_path_length(segmented_img=segmented_img, objects=leaf_objects) # Measure the straight-line, branch point to tip distance (Euclidean) for each leaf # labeled_img3 = pcv.morphology.segment_euclidean_length(segmented_img=segmented_img, objects=leaf_objects) # Measure the curvature of each leaf (Values closer to 1 indicate that a segment is a straight line while larger # values indicate the segment has more curvature) # labeled_img4 = pcv.morphology.segment_curvature(segmented_img=segmented_img, objects=leaf_objects) # Measure absolute leaf angles (angle of linear regression line fit to each leaf object) Note: negative values # signify leaves to the left of the stem, positive values signify leaves to the right of the stem # labeled_img5 = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=leaf_objects) # Measure leaf curvature in degrees # labeled_img6 = pcv.morphology.segment_tangent_angle(segmented_img=segmented_img, objects=leaf_objects, size=35) # Measure stem characteristics like stem angle and length # stem_img = pcv.morphology.analyze_stem(rgb_img=img, stem_objects=other_objects) # Remove unneeded observations (hack) _ = pcv.outputs.observations.pop("tips") _ = pcv.outputs.observations.pop("branch_pts") angles = pcv.outputs.observations["segment_insertion_angle"]["value"] remove_indices = [] for i, value in enumerate(angles): if value == "NA": remove_indices.append(i) remove_indices.sort(reverse=True) for i in remove_indices: _ = pcv.outputs.observations["segment_insertion_angle"]["value"].pop(i) # ## Save the results out to file for downsteam analysis pcv.print_results(filename=args.result)
def main(): # Get options args = options() pcv.params.debug = args.debug # set debug mode pcv.params.debug_outdir = args.outdir # set output directory # Read image img, path, filename = pcv.readimage(filename=args.image) # Convert RGB to HSV and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Threshold the blue image b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') b_cnt = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') # Fill small objects # b_fill = pcv.fill(b_thresh, 10) # Join the thresholded saturation and blue-yellow images bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt) # Apply Mask (for VIS images, mask_color=white) masked = pcv.apply_mask(img=img, mask=bs, mask_color='white') # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') cv2.imwrite("masked.jpeg", masked) # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images (OR) ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Fill small objects ab_fill = pcv.fill(bin_img=ab, size=200) # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white') cv2.imwrite("masked2.jpeg", masked2)
# Normalize the white color so you can later # compare color between images. # Inputs: # img = image object, RGB color space # roi = region for white reference, if none uses the whole image, # otherwise (x position, y position, box width, box height) # white balance image based on white toughspot img1 = pcv.white_balance(crop_img, roi=(0, 0, 200, 20)) # In[109]: # Convert RGB to HSV and extract the saturation channel # Then set threshold for saturation s = pcv.rgb2gray_hsv(rgb_img=img1, channel='s') s_thresh = pcv.threshold.binary(gray_img=s, threshold=122, max_value=255, object_type='dark') # In[110]: # Set Median Blur #Input box size "ksize" s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=2) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=2) # In[111]: # Convert RGB to LAB and extract the blue channel
def report_size_marker_area(img, roi_contour, roi_hierarchy, marker='define', objcolor='dark', thresh_channel=None, thresh=None): """Detects a size marker in a specified region and reports its size and eccentricity Inputs: img = An RGB or grayscale image to plot the marker object on roi_contour = A region of interest contour (e.g. output from pcv.roi.rectangle or other methods) roi_hierarchy = A region of interest contour hierarchy (e.g. output from pcv.roi.rectangle or other methods) marker = 'define' or 'detect'. If define it means you set an area, if detect it means you want to detect within an area objcolor = Object color is 'dark' or 'light' (is the marker darker or lighter than the background) thresh_channel = 'h', 's', or 'v' for hue, saturation or value thresh = Binary threshold value (integer) Returns: analysis_images = List of output images :param img: numpy.ndarray :param roi_contour: list :param roi_hierarchy: numpy.ndarray :param marker: str :param objcolor: str :param thresh_channel: str :param thresh: int :return: analysis_images: list """ params.device += 1 # Make a copy of the reference image ref_img = np.copy(img) # If the reference image is grayscale convert it to color if len(np.shape(ref_img)) == 2: ref_img = cv2.cvtColor(ref_img, cv2.COLOR_GRAY2BGR) # Marker components # If the marker type is "defined" then the marker_mask and marker_contours are equal to the input ROI # Initialize a binary image roi_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8) # Draw the filled ROI on the mask cv2.drawContours(roi_mask, roi_contour, -1, (255), -1) marker_mask = [] marker_contour = [] # If the marker type is "detect" then we will use the ROI to isolate marker contours from the input image if marker.upper() == 'DETECT': # We need to convert the input image into an one of the HSV channels and then threshold it if thresh_channel is not None and thresh is not None: # Mask the input image masked = apply_mask(rgb_img=ref_img, mask=roi_mask, mask_color="black") # Convert the masked image to hue, saturation, or value marker_hsv = rgb2gray_hsv(rgb_img=masked, channel=thresh_channel) # Threshold the HSV image marker_bin = binary_threshold(gray_img=marker_hsv, threshold=thresh, max_value=255, object_type=objcolor) # Identify contours in the masked image contours, hierarchy = find_objects(img=ref_img, mask=marker_bin) # Filter marker contours using the input ROI kept_contours, kept_hierarchy, kept_mask, obj_area = roi_objects(img=ref_img, object_contour=contours, obj_hierarchy=hierarchy, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, roi_type="partial") # If there are more than one contour detected, combine them into one # These become the marker contour and mask marker_contour, marker_mask = object_composition(img=ref_img, contours=kept_contours, hierarchy=kept_hierarchy) else: fatal_error('thresh_channel and thresh must be defined in detect mode') elif marker.upper() == "DEFINE": # Identify contours in the masked image contours, hierarchy = find_objects(img=ref_img, mask=roi_mask) # If there are more than one contour detected, combine them into one # These become the marker contour and mask marker_contour, marker_mask = object_composition(img=ref_img, contours=contours, hierarchy=hierarchy) else: fatal_error("marker must be either 'define' or 'detect' but {0} was provided.".format(marker)) # Calculate the moments of the defined marker region m = cv2.moments(marker_mask, binaryImage=True) # Calculate the marker area marker_area = m['m00'] # Fit a bounding ellipse to the marker center, axes, angle = cv2.fitEllipse(marker_contour) major_axis = np.argmax(axes) minor_axis = 1 - major_axis major_axis_length = axes[major_axis] minor_axis_length = axes[minor_axis] # Calculate the bounding ellipse eccentricity eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis]) ** 2) # Make a list to store output images analysis_image = [] cv2.drawContours(ref_img, marker_contour, -1, (255, 0, 0), 5) # out_file = os.path.splitext(filename)[0] + '_sizemarker.jpg' # print_image(ref_img, out_file) analysis_image.append(ref_img) if params.debug is 'print': print_image(ref_img, os.path.join(params.debug_outdir, str(params.device) + '_marker_shape.png')) elif params.debug is 'plot': plot_image(ref_img) outputs.add_observation(variable='marker_area', trait='marker area', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=marker_area, label='pixels') outputs.add_observation(variable='marker_ellipse_major_axis', trait='marker ellipse major axis length', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=major_axis_length, label='pixels') outputs.add_observation(variable='marker_ellipse_minor_axis', trait='marker ellipse minor axis length', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=minor_axis_length, label='pixels') outputs.add_observation(variable='marker_ellipse_eccentricity', trait='marker ellipse eccentricity', method='plantcv.plantcv.report_size_marker_area', scale='none', datatype=float, value=eccentricity, label='none') # Store images outputs.images.append(analysis_image) return analysis_image
def report_size_marker_area(img, roi_contour, roi_hierarchy, marker='define', objcolor='dark', thresh_channel=None, thresh=None): """Detects a size marker in a specified region and reports its size and eccentricity Inputs: img = An RGB or grayscale image to plot the marker object on roi_contour = A region of interest contour (e.g. output from pcv.roi.rectangle or other methods) roi_hierarchy = A region of interest contour hierarchy (e.g. output from pcv.roi.rectangle or other methods) marker = 'define' or 'detect'. If define it means you set an area, if detect it means you want to detect within an area objcolor = Object color is 'dark' or 'light' (is the marker darker or lighter than the background) thresh_channel = 'h', 's', or 'v' for hue, saturation or value thresh = Binary threshold value (integer) Returns: analysis_images = List of output images :param img: numpy.ndarray :param roi_contour: list :param roi_hierarchy: numpy.ndarray :param marker: str :param objcolor: str :param thresh_channel: str :param thresh: int :return: analysis_images: list """ # Store debug debug = params.debug params.debug = None params.device += 1 # Make a copy of the reference image ref_img = np.copy(img) # If the reference image is grayscale convert it to color if len(np.shape(ref_img)) == 2: ref_img = cv2.cvtColor(ref_img, cv2.COLOR_GRAY2BGR) # Marker components # If the marker type is "defined" then the marker_mask and marker_contours are equal to the input ROI # Initialize a binary image roi_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8) # Draw the filled ROI on the mask cv2.drawContours(roi_mask, roi_contour, -1, (255), -1) marker_mask = [] marker_contour = [] # If the marker type is "detect" then we will use the ROI to isolate marker contours from the input image if marker.upper() == 'DETECT': # We need to convert the input image into an one of the HSV channels and then threshold it if thresh_channel is not None and thresh is not None: # Mask the input image masked = apply_mask(rgb_img=ref_img, mask=roi_mask, mask_color="black") # Convert the masked image to hue, saturation, or value marker_hsv = rgb2gray_hsv(rgb_img=masked, channel=thresh_channel) # Threshold the HSV image marker_bin = binary_threshold(gray_img=marker_hsv, threshold=thresh, max_value=255, object_type=objcolor) # Identify contours in the masked image contours, hierarchy = find_objects(img=ref_img, mask=marker_bin) # Filter marker contours using the input ROI kept_contours, kept_hierarchy, kept_mask, obj_area = roi_objects( img=ref_img, object_contour=contours, obj_hierarchy=hierarchy, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, roi_type="partial") # If there are more than one contour detected, combine them into one # These become the marker contour and mask marker_contour, marker_mask = object_composition( img=ref_img, contours=kept_contours, hierarchy=kept_hierarchy) else: fatal_error( 'thresh_channel and thresh must be defined in detect mode') elif marker.upper() == "DEFINE": # Identify contours in the masked image contours, hierarchy = find_objects(img=ref_img, mask=roi_mask) # If there are more than one contour detected, combine them into one # These become the marker contour and mask marker_contour, marker_mask = object_composition(img=ref_img, contours=contours, hierarchy=hierarchy) else: fatal_error( "marker must be either 'define' or 'detect' but {0} was provided.". format(marker)) # Calculate the moments of the defined marker region m = cv2.moments(marker_mask, binaryImage=True) # Calculate the marker area marker_area = m['m00'] # Fit a bounding ellipse to the marker center, axes, angle = cv2.fitEllipse(marker_contour) major_axis = np.argmax(axes) minor_axis = 1 - major_axis major_axis_length = axes[major_axis] minor_axis_length = axes[minor_axis] # Calculate the bounding ellipse eccentricity eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis])**2) cv2.drawContours(ref_img, marker_contour, -1, (255, 0, 0), 5) analysis_image = ref_img # Reset debug mode params.debug = debug if params.debug is 'print': print_image( ref_img, os.path.join(params.debug_outdir, str(params.device) + '_marker_shape.png')) elif params.debug is 'plot': plot_image(ref_img) outputs.add_observation(variable='marker_area', trait='marker area', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=marker_area, label='pixels') outputs.add_observation(variable='marker_ellipse_major_axis', trait='marker ellipse major axis length', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=major_axis_length, label='pixels') outputs.add_observation(variable='marker_ellipse_minor_axis', trait='marker ellipse minor axis length', method='plantcv.plantcv.report_size_marker_area', scale='pixels', datatype=int, value=minor_axis_length, label='pixels') outputs.add_observation(variable='marker_ellipse_eccentricity', trait='marker ellipse eccentricity', method='plantcv.plantcv.report_size_marker_area', scale='none', datatype=float, value=eccentricity, label='none') # Store images outputs.images.append(analysis_image) return analysis_image
def colorspaces(rgb_img, original_img=True): """ Visualize an RGB image in all potential colorspaces Inputs: rgb_img = RGB image data original_img = Whether or not to include the original image the the debugging plot Returns: plotting_img = Plotting image containing the original image and L,A,B,H,S, and V colorspaces :param segmented_img: numpy.ndarray :param original_img: bool :return labeled_img: numpy.ndarray """ if not len(np.shape(rgb_img)) == 3: fatal_error("Input image is not RGB!") # Store and disable debug mode debug = params.debug params.debug = None # Initialize grayscale images list, rgb images list, plotting coordinates colorspace_names = ["H", "S", "V", "L", "A", "B"] all_colorspaces = [] labeled_imgs = [] y = int(np.shape(rgb_img)[0] / 2) x = int(np.shape(rgb_img)[1] / 2) # Loop through and create grayscale imgs from each colorspace for i in range(0, 3): channel = colorspace_names[i] all_colorspaces.append(rgb2gray_hsv(rgb_img=rgb_img, channel=channel)) for i in range(3, 6): channel = colorspace_names[i] all_colorspaces.append(rgb2gray_lab(rgb_img=rgb_img, channel=channel)) # Plot labels of each colorspace on the corresponding img for i, colorspace in enumerate(all_colorspaces): converted_img = cv2.cvtColor(colorspace, cv2.COLOR_GRAY2RGB) labeled = cv2.putText(img=converted_img, text=colorspace_names[i], org=(x, y), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=params.text_size, color=(255, 0, 255), thickness=params.text_thickness) labeled_imgs.append(labeled) # Compile images together, including a larger version of the original image plotting_img = np.vstack([np.hstack([labeled_imgs[0], labeled_imgs[1], labeled_imgs[2]]), np.hstack([labeled_imgs[3], labeled_imgs[4], labeled_imgs[5]])]) # If original_img is True then also plot the original image with the rest of them if original_img: plotting_img = np.hstack([resize(img=rgb_img, resize_x=2, resize_y=2), plotting_img]) plotting_img = resize(plotting_img, resize_x=.5, resize_y=.5) # Reset debug mode params.debug = debug if params.debug == "print": # If debug is print, save the image to a file print_image(plotting_img, os.path.join(params.debug_outdir, str(params.device) + "_vis_colorspaces.png")) elif params.debug == "plot": # If debug is plot, print to the plotting device plot_image(plotting_img) return plotting_img
def main(): # Get options args = options() if args.debug: pcv.params.debug = args.debug # set debug mode if args.debugdir: pcv.params.debug_outdir = args.debugdir # set debug directory os.makedirs(args.debugdir, exist_ok=True) # pixel_resolution # mm # see pixel_resolution.xlsx for calibration curve for pixel to mm translation pixelresolution = 0.052 # The result file should exist if plantcv-workflow.py was run if os.path.exists(args.result): # Open the result file results = open(args.result, "r") # The result file would have image metadata in it from plantcv-workflow.py, read it into memory metadata = json.load(results) # Close the file results.close() # Delete the file, we will create new ones os.remove(args.result) plantbarcode = metadata['metadata']['plantbarcode']['value'] print(plantbarcode, metadata['metadata']['timestamp']['value'], sep=' - ') else: # If the file did not exist (for testing), initialize metadata as an empty string metadata = "{}" regpat = re.compile(args.regex) plantbarcode = re.search(regpat, args.image).groups()[0] # read images and create mask img, _, fn = pcv.readimage(args.image) imagename = os.path.splitext(fn)[0] # create mask # taf=filters.try_all_threshold(s_img) ## remove background s_img = pcv.rgb2gray_hsv(img, 's') min_s = filters.threshold_minimum(s_img) thresh_s = pcv.threshold.binary(s_img, min_s, 255, 'light') rm_bkgrd = pcv.fill_holes(thresh_s) ## low greenness thresh_s = pcv.threshold.binary(s_img, min_s + 15, 255, 'dark') # taf = filters.try_all_threshold(s_img) c = pcv.logical_xor(rm_bkgrd, thresh_s) cinv = pcv.invert(c) cinv_f = pcv.fill(cinv, 500) cinv_f_c = pcv.closing(cinv_f, np.ones((5, 5))) cinv_f_c_e = pcv.erode(cinv_f_c, 2, 1) ## high greenness a_img = pcv.rgb2gray_lab(img, channel='a') # taf = filters.try_all_threshold(a_img) t_a = filters.threshold_isodata(a_img) thresh_a = pcv.threshold.binary(a_img, t_a, 255, 'dark') thresh_a = pcv.closing(thresh_a, np.ones((5, 5))) thresh_a_f = pcv.fill(thresh_a, 500) ## combined mask lor = pcv.logical_or(cinv_f_c_e, thresh_a_f) close = pcv.closing(lor, np.ones((2, 2))) fill = pcv.fill(close, 800) erode = pcv.erode(fill, 3, 1) fill2 = pcv.fill(erode, 1200) # dilate = pcv.dilate(fill2,2,2) mask = fill2 final_mask = np.zeros_like(mask) # Compute greenness # split color channels b, g, r = cv2.split(img) # print green intensity # g_img = pcv.visualize.pseudocolor(g, cmap='Greens', background='white', min_value=0, max_value=255, mask=mask, axes=False) # convert color channels to int16 so we can add them (values will be greater than 255 which is max of current uint8 format) g = g.astype('uint16') r = r.astype('uint16') b = b.astype('uint16') denom = g + r + b # greenness index out_flt = np.zeros_like(denom, dtype='float32') # divide green by sum of channels to compute greenness index with values 0-1 gi = np.divide(g, denom, out=out_flt, where=np.logical_and(denom != 0, mask > 0)) # find objects c, h = pcv.find_objects(img, mask) rc, rh = pcv.roi.multi(img, coord=[(1300, 900), (1300, 2400)], radius=350) # Turn off debug temporarily, otherwise there will be a lot of plots pcv.params.debug = None # Loop over each region of interest i = 0 rc_i = rc[i] for i, rc_i in enumerate(rc): rh_i = rh[i] # Add ROI number to output. Before roi_objects so result has NA if no object. pcv.outputs.add_observation(variable='roi', trait='roi', method='roi', scale='int', datatype=int, value=i, label='#') roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects( img, roi_contour=rc_i, roi_hierarchy=rh_i, object_contour=c, obj_hierarchy=h, roi_type='partial') if obj_area == 0: print('\t!!! No object found in ROI', str(i)) pcv.outputs.add_observation( variable='plantarea', trait='plant area in sq mm', method='observations.area*pixelresolution^2', scale=pixelresolution, datatype="<class 'float'>", value=0, label='sq mm') else: # Combine multiple objects # ple plant objects within an roi together plant_object, plant_mask = pcv.object_composition( img=img, contours=roi_obj, hierarchy=hierarchy_obj) final_mask = pcv.image_add(final_mask, plant_mask) # Save greenness for individual ROI grnindex = np.mean(gi[np.where(plant_mask > 0)]) pcv.outputs.add_observation( variable='greenness_index', trait='mean normalized greenness index', method='g/sum(b+g+r)', scale='[0,1]', datatype="<class 'float'>", value=float(grnindex), label='/1') # Analyze all colors hist = pcv.analyze_color(img, plant_mask, 'all') # Analyze the shape of the current plant shape_img = pcv.analyze_object(img, plant_object, plant_mask) plant_area = pcv.outputs.observations['area'][ 'value'] * pixelresolution**2 pcv.outputs.add_observation( variable='plantarea', trait='plant area in sq mm', method='observations.area*pixelresolution^2', scale=pixelresolution, datatype="<class 'float'>", value=plant_area, label='sq mm') # end if-else # At this point we have observations for one plant # We can write these out to a unique results file # Here I will name the results file with the ROI ID combined with the original result filename basename, ext = os.path.splitext(args.result) filename = basename + "-roi" + str(i) + ext # Save the existing metadata to the new file with open(filename, "w") as r: json.dump(metadata, r) pcv.print_results(filename=filename) # The results are saved, now clear out the observations so the next loop adds new ones for the next plant pcv.outputs.clear() if args.writeimg and obj_area != 0: imgdir = os.path.join(args.outdir, 'shape_images', plantbarcode) os.makedirs(imgdir, exist_ok=True) pcv.print_image( shape_img, os.path.join(imgdir, imagename + '-roi' + str(i) + '-shape.png')) imgdir = os.path.join(args.outdir, 'colorhist_images', plantbarcode) os.makedirs(imgdir, exist_ok=True) pcv.print_image( hist, os.path.join(imgdir, imagename + '-roi' + str(i) + '-colorhist.png')) # end roi loop if args.writeimg: # save grnness image of entire tray imgdir = os.path.join(args.outdir, 'pseudocolor_images', plantbarcode) os.makedirs(imgdir, exist_ok=True) gi_img = pcv.visualize.pseudocolor(gi, obj=None, mask=final_mask, cmap='viridis', axes=False, min_value=0.3, max_value=0.6, background='black', obj_padding=0) gi_img = add_scalebar(gi_img, pixelresolution=pixelresolution, barwidth=20, barlocation='lower left') gi_img.set_size_inches(6, 6, forward=False) gi_img.savefig(os.path.join(imgdir, imagename + '-greenness.png'), bbox_inches='tight') gi_img.clf()
def plot_hotspots(directory, filename,convex_hull_flag): # Read image in_full_path = os.path.join(directory, filename) img, path, filename = pcv.readimage(in_full_path, mode="rgb") img_thermal = img.copy() # Convert RGB to HSV and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) edge = cv2.Canny(s_mblur, 60, 180) outfile = 'Gray_' + filename out_full_path = os.path.join(directory, outfile) cv2.imwrite(out_full_path, edge) # Contours extraction contours, hierarchy = cv2.findContours(edge.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] #contours = sorted(contours, key=cv2.contourArea, reverse=True) hull_list = [] if (convex_hull_flag == True): for i in range(len(contours)): hull = cv2.convexHull(contours[i]) hull_list.append(hull) contours = hull_list mask = np.zeros(edge.shape, np.uint8) hiers = hierarchy[0] for i in range(len(contours)): if hiers[i][3] != -1: continue cv2.drawContours(mask, contours, i,255, cv2.LINE_AA) ## Find all inner contours and draw ch = hiers[i][2] while ch != -1: cv2.drawContours(mask, contours, ch, (255,0,255), -1, cv2.LINE_AA) ch = hiers[ch][0] thermal = thermal_image(img_thermal, mask) if (convex_hull_flag == True): outfile = 'Thermal_tree_CH_' + filename else: outfile = 'Thermal_tree_' + filename out_full_path = os.path.join(directory, outfile) cv2.imwrite(out_full_path, thermal) centroids = [] if (convex_hull_flag == True): area_threshold = 30 else: area_threshold = 10 for i, cnt in enumerate(contours): cv2.drawContours(mask, contours, i,255, cv2.FILLED) if (cv2.contourArea(cnt) > area_threshold ): moment = cv2.moments(contours[i]) Cx = int(moment["m10"]/moment["m00"]) Cy = int(moment["m01"]/moment["m00"]) center = (Cx, Cy) centroids.append((contours, center, moment["m00"], 0)) #cv2.circle(img, (Cx, Cy), 5, (255, 255, 255), -1) coordinate = '(' + str(Cx) + ',' + str(Cy) + ')' cv2.putText(img, coordinate, (Cx,Cy), cv2.FONT_HERSHEY_SIMPLEX, 0.5, RED, 1, cv2.LINE_AA) print(cv2.contourArea(cnt),Cx, Cy) if Debug == True: fig, ax = plt.subplots(1, figsize=(12,8)) plt.imshow(mask, cmap='Greys') if (convex_hull_flag == True): outfile = 'Hotspots_CH_' + filename else: outfile = 'Hotspots_' + filename out_full_path = os.path.join(directory, outfile) cv2.imwrite(out_full_path, img) return
def generateMask(input, output, maskType=MASK_TYPES['BW']): pcv.params.debug = True #set debug mode # pcv.params.debug_outdir="./output.txt" #set output directory # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb') # Inputs: # filename - Image file to be read in # mode - Return mode of image; either 'native' (default), 'rgb', 'gray', 'envi', or 'csv' img, path, filename = pcv.readimage(filename=input, mode='rgb') s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=85, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Threshold the blue image b_thresh = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') b_cnt = pcv.threshold.binary(gray_img=b, threshold=160, max_value=255, object_type='light') # Fill small objects # b_fill = pcv.fill(b_thresh, 10) # Join the thresholded saturation and blue-yellow images bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt) # Apply Mask (for VIS images, mask_color=white) masked = pcv.apply_mask(img=img, mask=bs, mask_color='white') # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images (OR) ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) if maskType == MASK_TYPES['BW']: pcv.print_image(ab, filename=output) return (True, None) # Fill small objects ab_fill = pcv.fill(bin_img=ab, size=200) # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='black') if maskType == MASK_TYPES['COLORED']: pcv.print_image(masked2, filename=output) return (True, None) return (False, 'Unknown mask type.') """
def main(): # Get options pcv.params.debug = args.debug #set debug mode pcv.params.debug_outdir = args.outdir #set output directory # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb') # Inputs: # filename - Image file to be read in # mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv' img, path, filename = pcv.readimage(filename=args.image, mode='rgb') ### SELECTING THE PLANT ### Attempt 5 combineren # Parameters hue_lower_tresh = 22 # 24 hue_higher_tresh = 50 # 50 saturation_lower_tresh = 138 # 140 saturation_higher_tresh = 230 # 230 value_lower_tresh = 120 # 125 value_higher_tresh = 255 # 255 # RGB color space green_lower_tresh = 105 # 110 green_higher_tresh = 255 # 255 red_lower_tresh = 22 # 24 red_higher_thresh = 98 # 98 blue_lower_tresh = 85 # 85 blue_higher_tresh = 253 # 255 # CIELAB color space #lab_blue_lower_tresh = 0 # Blue yellow channel #lab_blue_higher_tresh = 255 s = pcv.rgb2gray_hsv(rgb_img=img, channel='h') mask, masked_image = pcv.threshold.custom_range( rgb_img=s, lower_thresh=[hue_lower_tresh], upper_thresh=[hue_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=img, mask=mask, mask_color='white') # Filtered on Hue s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s') mask, masked_image = pcv.threshold.custom_range( rgb_img=s, lower_thresh=[saturation_lower_tresh], upper_thresh=[saturation_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white') #filtered on saturation s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v') mask, masked_image = pcv.threshold.custom_range( rgb_img=s, lower_thresh=[value_lower_tresh], upper_thresh=[value_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white') #filtered on value mask, masked = pcv.threshold.custom_range( rgb_img=masked, lower_thresh=[0, green_lower_tresh, 0], upper_thresh=[255, green_higher_tresh, 255], channel='RGB') masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white') #filtered on green mask, masked = pcv.threshold.custom_range( rgb_img=masked, lower_thresh=[red_lower_tresh, 0, 0], upper_thresh=[red_higher_thresh, 255, 255], channel='RGB') masked = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white') #filtered on red mask_old, masked_old = pcv.threshold.custom_range( rgb_img=masked, lower_thresh=[0, 0, blue_lower_tresh], upper_thresh=[255, 255, blue_higher_tresh], channel='RGB') masked = pcv.apply_mask(rgb_img=masked_old, mask=mask_old, mask_color='white') #filtered on blue #b = pcv.rgb2gray_lab(rgb_img = masked, channel = 'b') # Converting toe CIElab blue_yellow image #b_thresh =pcv.threshold.binary(gray_img = b, threshold=lab_blue_lower_tresh, max_value = lab_blue_higher_tresh) ###_____________________________________ Now to identify objects masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary( gray_img=masked_a, threshold=125, # original 115 max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary( gray_img=masked_a, threshold=140, # original 135 max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Fill small objects # Inputs: # bin_img - Binary image data # size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled ab = pcv.median_blur(gray_img=ab, ksize=3) ab_fill = pcv.fill(bin_img=ab, size=1000) #print("filled") # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white') # ID the objects id_objects, obj_hierarchy = pcv.find_objects(masked2, ab_fill) # Let's just take the largest roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2, x=0, y=0, h=960, w=1280) # Currently hardcoded # Decide which objects to keep # Inputs: # img = img to display kept objects # roi_contour = contour of roi, output from any ROI function # roi_hierarchy = contour of roi, output from any ROI function # object_contour = contours of objects, output from pcv.find_objects function # obj_hierarchy = hierarchy of objects, output from pcv.find_objects function # roi_type = 'partial' (default, for partially inside), 'cutto', or # 'largest' (keep only largest contour) with HiddenPrints(): roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') # Object combine kept objects # Inputs: # img - RGB or grayscale image data for plotting # contours - Contour list # hierarchy - Contour hierarchy array obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) #print("final plant") new_im = Image.fromarray(masked2) new_im.save("output//" + args.filename + "last_masked.png") ##################_________________ Analysis outfile = args.outdir + "/" + filename # Here come all the analyse functions. # pcv.acute_vertex(img, obj, 30, 15, 100) color_img = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type=None) #new_im = Image.fromarray(color_img) #new_im.save(args.filename + "color_img.png") # Find shape properties, output shape image (optional) # Inputs: # img - RGB or grayscale image data # obj- Single or grouped contour object # mask - Binary image mask to use as mask for moments analysis shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask) new_im = Image.fromarray(shape_img) new_im.save("output//" + args.filename + "shape_img.png") # Shape properties relative to user boundary line (optional) # Inputs: # img - RGB or grayscale image data # obj - Single or grouped contour object # mask - Binary mask of selected contours # line_position - Position of boundary line (a value of 0 would draw a line # through the bottom of the image) boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680) new_im = Image.fromarray(boundary_img1) new_im.save("output//" + args.filename + "boundary_img.png") # Determine color properties: Histograms, Color Slices, output color analyzed histogram (optional) # Inputs: # rgb_img - RGB image data # mask - Binary mask of selected contours # hist_plot_type - None (default), 'all', 'rgb', 'lab', or 'hsv' # This is the data to be printed to the SVG histogram file color_histogram = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type='all') #new_im = Image.fromarray(color_histogram) #new_im.save(args.filename + "color_histogram_img.png") # Pseudocolor the grayscale image # Inputs: # gray_img - Grayscale image data # obj - Single or grouped contour object (optional), if provided the pseudocolored image gets # cropped down to the region of interest. # mask - Binary mask (optional) # background - Background color/type. Options are "image" (gray_img, default), "white", or "black". A mask # must be supplied. # cmap - Colormap # min_value - Minimum value for range of interest # max_value - Maximum value for range of interest # dpi - Dots per inch for image if printed out (optional, if dpi=None then the default is set to 100 dpi). # axes - If False then the title, x-axis, and y-axis won't be displayed (default axes=True). # colorbar - If False then the colorbar won't be displayed (default colorbar=True) pseudocolored_img = pcv.visualize.pseudocolor(gray_img=s, mask=kept_mask, cmap='jet') #new_im = Image.fromarray(pseudocolored_img) #new_im.save(args.filename + "pseudocolored.png") # Write shape and color data to results file pcv.print_results(filename=args.result)
def iterate_rois(img, c, h, rc, rh, args, masked=True, gi=False, shape=False, hist=True, hue=False): """Analyze each ROI separately and store results Parameters ---------- img : ndarray rgb image c : list object contours h : list object countour hierarchy rc : list roi contours rh : list roi contour hierarchy threshold_mask : ndarray binary image (mask) from threshold steps args : dict commandline arguments and metadata from running the workflow masked : boolean whether to print masked rgb images for each roi gi : boolean whether to print greenness index false color shape : boolean whether to print object shapes on an image hist : boolean whether to print color histogram hue : boolean whether to save hsv color info and print the hue false color image Returns ------- binary image of plant mask that includes both threshold and roi filter steps : ndarray """ final_mask = np.zeros(shape=np.shape(img)[0:2], dtype='uint8') # Compute greenness if gi: img_gi = cppc.compute.greenness_index(img=img, mask=final_mask+1) if hue: img_h = pcv.rgb2gray_hsv(img, 'h') for i, rc_i in enumerate(rc): rh_i = rh[i] # Add ROI number to output. Before roi_objects so result has NA if no object. pcv.outputs.add_observation( sample='default', variable='roi', trait='roi', method='roi', scale='int', datatype=int, value=i, label='#') roi_obj, hierarchy_obj, submask, obj_area = pcv.roi_objects( img, roi_contour=rc_i, roi_hierarchy=rh_i, object_contour=c, obj_hierarchy=h, roi_type='partial') if obj_area == 0: print('\t!!! No object found in ROI', str(i)) pcv.outputs.add_observation( sample='default', variable='plantarea', trait='plant area in sq mm', method='observations.area*pixelresolution^2', scale=cppc.pixelresolution, datatype="<class 'float'>", value=0, label='sq mm') else: # Combine multiple objects # ple plant objects within an roi together plant_object, plant_mask = pcv.object_composition( img=img, contours=roi_obj, hierarchy=hierarchy_obj) final_mask = pcv.image_add(final_mask, plant_mask) if gi: # Save greenness for individual ROI grnindex = cppc.utils.mean(img_gi, plant_mask) grnindexstd = cppc.utils.std(img_gi, plant_mask) pcv.outputs.add_observation( sample='default', variable='greenness_index', trait='mean normalized greenness index', method='g/sum(b+g+r)', scale='[0,1]', datatype="<class 'float'>", value=float(grnindex), label='/1') pcv.outputs.add_observation( sample='default', variable='greenness_index_std', trait='std normalized greenness index', method='g/sum(b+g+r)', scale='[0,1]', datatype="<class 'float'>", value=float(grnindexstd), label='/1') # Analyze all colors if hist: colorhist = pcv.analyze_color(img, plant_mask, 'all') elif hue: _ = pcv.analyze_color(img, plant_mask, 'hsv') # Analyze the shape of the current plant (always do this even if shape is False so you can get plant_area) img_shape = pcv.analyze_object(img, plant_object, plant_mask) plant_area = pcv.outputs.observations['default']['area']['value'] * cppc.pixelresolution**2 pcv.outputs.add_observation( sample='default', variable='plantarea', trait='plant area in sq mm', method='observations.area*pixelresolution^2', scale=cppc.pixelresolution, datatype="<class 'float'>", value=plant_area, label='sq mm') # end if-else # At this point we have observations for one plant # We can write these out to a unique results file write_output(args, i) if args.writeimg and obj_area != 0: if shape: imgdir = os.path.join(args.outdir, 'shape_images', args.plantbarcode) os.makedirs(imgdir, exist_ok=True) pcv.print_image(img_shape, os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-shape.png')) if hist: imgdir = os.path.join(args.outdir, 'colorhist_images', args.plantbarcode) os.makedirs(imgdir, exist_ok=True) pcv.print_image(colorhist, os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-colorhist.png')) if masked: # save masked rgb image for entire tray but only 1 plant imgdir = os.path.join(args.outdir, 'maskedrgb_images') os.makedirs(imgdir, exist_ok=True) img_masked = pcv.apply_mask(img, plant_mask, 'black') pcv.print_image( img_masked, os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-masked.png')) if hue: # save hue false color image for entire tray but only 1 plant imgdir = os.path.join(args.outdir, 'hue_images') os.makedirs(imgdir, exist_ok=True) fig_hue = pcv.visualize.pseudocolor(img_h*2, obj=None, mask=plant_mask, cmap=cppc.viz.get_cmap('hue'), axes=False, min_value=0, max_value=179, background='black', obj_padding=0) fig_hue = cppc.viz.add_scalebar(fig_hue, pixelresolution=cppc.pixelresolution, barwidth=10, barlabel='1 cm', barlocation='lower left') fig_hue.set_size_inches(6, 6, forward=False) fig_hue.savefig(os.path.join(imgdir, args.imagename + '-roi' + str(i) + '-hue.png'), bbox_inches='tight', dpi=300) fig_hue.clf() if gi: # save grnness image of entire tray but only 1 plant imgdir = os.path.join(args.outdir, 'grnindex_images') os.makedirs(imgdir, exist_ok=True) fig_gi = pcv.visualize.pseudocolor(img_gi, obj=None, mask=plant_mask, cmap='viridis', axes=False, min_value=0.3, max_value=0.6, background='black', obj_padding=0) fig_gi = cppc.viz.add_scalebar( fig_gi, pixelresolution=cppc.pixelresolution, barwidth=10, barlabel='1 cm', barlocation='lower left') fig_gi.set_size_inches(6, 6, forward=False) fig_gi.savefig(os.path.join( imgdir, args.imagename + '-roi' + str(i) + '-greenness.png'), bbox_inches='tight', dpi=300) fig_gi.clf() # end roi loop return final_mask
def report_size_marker_area(img, shape, device, debug, marker='define', x_adj=0, y_adj=0, w_adj=0, h_adj=0, base='white', objcolor='dark', thresh_channel=None, thresh=None, filename=False): """Outputs numeric properties for an input object (contour or grouped contours). Inputs: img = image object (most likely the original), color(RGB) shape = 'rectangle', 'circle', 'ellipse' device = device number. Used to count steps in the pipeline debug = None, print, or plot. Print = save to file, Plot = print to screen. marker = define or detect, if define it means you set an area, if detect it means you want to detect within an area x_adj = x position of shape, integer y_adj = y position of shape, integer w_adj = width h_adj = height plantcv = background color 'white' is default objcolor = object color is 'dark' or 'light' thresh_channel = 'h', 's','v' thresh = integer value filename = name of file Returns: device = device number marker_header = shape data table headers marker_data = shape data table values analysis_images = list of output images :param img: numpy array :param shape: str :param device: int :param debug: str :param marker: str :param x_adj:int :param y_adj:int :param w_adj:int :param h_adj:int :param h_adj:int :param base:str :param objcolor: str :param thresh_channel:str :param thresh:int :param filename: str :return: device: int :return: marker_header: str :return: marker_data: int :return: analysis_images: list """ device += 1 ori_img = np.copy(img) if len(np.shape(img)) == 3: ix, iy, iz = np.shape(img) else: ix, iy = np.shape(img) size = ix, iy roi_background = np.zeros(size, dtype=np.uint8) roi_size = (ix - 5), (iy - 5) roi = np.zeros(roi_size, dtype=np.uint8) roi1 = roi + 1 roi_contour, roi_heirarchy = cv2.findContours(roi1, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] cv2.drawContours(roi_background, roi_contour[0], -1, (255, 0, 0), 5) if (x_adj > 0 and w_adj > 0) or (y_adj > 0 and h_adj > 0): fatal_error( 'Adjusted ROI position is out of frame, this will cause problems in detecting objects' ) for cnt in roi_contour: size1 = ix, iy, 3 background = np.zeros(size1, dtype=np.uint8) if shape == 'rectangle' and (x_adj >= 0 and y_adj >= 0): x, y, w, h = cv2.boundingRect(cnt) x1 = x + x_adj y1 = y + y_adj w1 = w + w_adj h1 = h + h_adj cv2.rectangle(background, (x1, y1), (x + w1, y + h1), (1, 1, 1), -1) elif shape == 'circle': x, y, w, h = cv2.boundingRect(cnt) x1 = x + x_adj y1 = y + y_adj w1 = w + w_adj h1 = h + h_adj center = (int((w + x1) / 2), int((h + y1) / 2)) if h > w: radius = int(w1 / 2) cv2.circle(background, center, radius, (1, 1, 1), -1) else: radius = int(h1 / 2) cv2.circle(background, center, radius, (1, 1, 1), -1) elif shape == 'ellipse': x, y, w, h = cv2.boundingRect(cnt) x1 = x + x_adj y1 = y + y_adj w1 = w + w_adj h1 = h + h_adj center = (int((w + x1) / 2), int((h + y1) / 2)) if w > h: cv2.ellipse(background, center, (int(w1 / 2), int(h1 / 2)), 0, 0, 360, (1, 1, 1), -1) else: cv2.ellipse(background, center, (int(h1 / 2), int(w1 / 2)), 0, 0, 360, (1, 1, 1), -1) else: fatal_error('Shape' + str(shape) + ' is not "rectangle", "circle", or "ellipse"!') markerback = cv2.cvtColor(background, cv2.COLOR_RGB2GRAY) shape_contour, hierarchy = cv2.findContours(markerback, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] cv2.drawContours(ori_img, shape_contour, -1, (255, 255, 0), 5) if debug is 'print': print_image(ori_img, (str(device) + '_marker_roi.png')) elif debug is 'plot': plot_image(ori_img) if marker == 'define': m = cv2.moments(markerback, binaryImage=True) area = m['m00'] device, id_objects, obj_hierarchy = find_objects( img, markerback, device, debug) device, obj, mask = object_composition(img, id_objects, obj_hierarchy, device, debug) center, axes, angle = cv2.fitEllipse(obj) major_axis = np.argmax(axes) minor_axis = 1 - major_axis major_axis_length = axes[major_axis] minor_axis_length = axes[minor_axis] eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis])**2) elif marker == 'detect': if thresh_channel is not None and thresh is not None: if base == 'white': masked = cv2.multiply(img, background) marker1 = markerback * 255 mask1 = cv2.bitwise_not(marker1) markstack = np.dstack((mask1, mask1, mask1)) added = cv2.add(masked, markstack) else: added = cv2.multiply(img, background) device, maskedhsv = rgb2gray_hsv(added, thresh_channel, device, debug) device, masked2a_thresh = binary_threshold(maskedhsv, thresh, 255, objcolor, device, debug) device, id_objects, obj_hierarchy = find_objects( added, masked2a_thresh, device, debug) device, roi1, roi_hierarchy = define_roi(added, shape, device, None, 'default', debug, True, x_adj, y_adj, w_adj, h_adj) device, roi_o, hierarchy3, kept_mask, obj_area = roi_objects( img, 'partial', roi1, roi_hierarchy, id_objects, obj_hierarchy, device, debug) device, obj, mask = object_composition(img, roi_o, hierarchy3, device, debug) cv2.drawContours(ori_img, roi_o, -1, (0, 255, 0), -1, lineType=8, hierarchy=hierarchy3) m = cv2.moments(mask, binaryImage=True) area = m['m00'] center, axes, angle = cv2.fitEllipse(obj) major_axis = np.argmax(axes) minor_axis = 1 - major_axis major_axis_length = axes[major_axis] minor_axis_length = axes[minor_axis] eccentricity = np.sqrt(1 - (axes[minor_axis] / axes[major_axis])**2) else: fatal_error( 'thresh_channel and thresh must be defined in detect mode') else: fatal_error("marker must be either in 'detect' or 'define' mode") analysis_images = [] if filename: out_file = str(filename[0:-4]) + '_sizemarker.jpg' print_image(ori_img, out_file) analysis_images.append(['IMAGE', 'marker', out_file]) if debug is 'print': print_image(ori_img, (str(device) + '_marker_shape.png')) elif debug is 'plot': plot_image(ori_img) marker_header = ('HEADER_MARKER', 'marker_area', 'marker_major_axis_length', 'marker_minor_axis_length', 'marker_eccentricity') marker_data = ('MARKER_DATA', area, major_axis_length, minor_axis_length, eccentricity) return device, marker_header, marker_data, analysis_images
DATA_DIR = '' for image in os.listdir(DATA_DIR): # Read Image image = cv2.imread(DATA_DIR + "/" + image) # Prompt the user to select the region of interest roi = cv2.selectROI(image) # Collect the cropped image cropped_img = image[int(roi[1]):int(roi[1] + roi[3]), int(roi[0]):int(roi[0] + roi[2])] # Convert RGB to HSV and extract saturation channel # The HSV value can be changed to be h, s, or v depending on the colour of the flower saturation_img = pcv.rgb2gray_hsv(cropped_img, 'h') # Threshold the saturation img # Depending on the output of the saturation image, the value can be light or dark # Light or dark is what defines what part of the image its to be removed saturation_thresh = pcv.threshold.binary(saturation_img, 85, 255, 'light') # Apply median blur saturation_mblur = pcv.median_blur(saturation_thresh, 5) # Convert RGB to LAB and extract blue channel # Like the HSV function this can be l, a, or b depending on the colour of the flower blue_channel_img = pcv.rgb2gray_lab(cropped_img, 'l') blue_channel_cnt = pcv.threshold.binary(blue_channel_img, 160, 255, 'light')
def silhouette_top(): "First we draw the picture from the 3D data" ######################################################################################################################################################################## x = [] y = [] z = [] image_top = Image.new("RGB", (width, height), color='white') draw = ImageDraw.Draw(image_top) data_3d = open(args.image, "r") orignal_file = args.image for line in data_3d: line = line.split(",") y.append(int(line[0])) x.append(int(line[1])) z.append(int(line[2])) i = 0 for point_x in x: point_y = y[i] draw.rectangle([point_x, point_y, point_x + 1, point_y + 1], fill="black") #rectange takes input [x0, y0, x1, y1] i += 1 image_top.save("top_temp.png") image_side = Image.new("RGB", (1280, 960), color='white') draw = ImageDraw.Draw(image_side) i = 0 for point_y in y: point_z = z[i] draw.rectangle([point_z, point_y, point_z + 1, point_y + 1], fill="black") #rectange takes input [x0, y0, x1, y1] i += 1 image_side.save("side_temp.png") ######################################################################################################################################################################## args.image = "top_temp.png" # Get options pcv.params.debug = args.debug #set debug mode pcv.params.debug_outdir = args.outdir #set output directory pcv.params.debug = args.debug # set debug mode pcv.params.debug_outdir = args.outdir # set output directory # Read image img, path, filename = pcv.readimage(filename=args.image) v = pcv.rgb2gray_hsv(rgb_img=img, channel='v') v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v, lower_thresh=[0], upper_thresh=[200], channel='gray') id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image, mask=v_thresh) # Define ROI roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image, x=0, y=0, h=height, w=width) # Decide which objects to keep roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) outfile = args.outdir + "/" + filename # Shape properties relative to user boundary line (optional) boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680) new_im = Image.fromarray(boundary_img1) new_im.save("output//" + args.filename + "_top_boundary.png") # Find shape properties, output shape image (optional) shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask) new_im = Image.fromarray(shape_img) new_im.save("output//" + args.filename + "_top_shape.png") new_im.save("output//" + args.filename + "shape_img.png") GT = re.sub(pattern, replacement, files_names[file_counter]) pcv.outputs.add_observation(variable="genotype", trait="genotype", method="Regexed from the filename", scale=None, datatype=str, value=int(GT), label="GT") # Write shape and color data to results file pcv.print_results(filename=args.result) ########################################################################################################################################## args.image = "side_temp.png" # Get options pcv.params.debug = args.debug #set debug mode pcv.params.debug_outdir = args.outdir #set output directory pcv.params.debug = args.debug # set debug mode pcv.params.debug_outdir = args.outdir # set output directory # Read image img, path, filename = pcv.readimage(filename=args.image) v = pcv.rgb2gray_hsv(rgb_img=img, channel='v') v_thresh, maskedv_image = pcv.threshold.custom_range(rgb_img=v, lower_thresh=[0], upper_thresh=[200], channel='gray') id_objects, obj_hierarchy = pcv.find_objects(img=maskedv_image, mask=v_thresh) # Define ROI roi1, roi_hierarchy = pcv.roi.rectangle(img=maskedv_image, x=0, y=0, h=height, w=width) # Decide which objects to keep roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) outfile = args.outdir + "/" + filename # Shape properties relative to user boundary line (optional) boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=obj, mask=mask, line_position=1680) new_im = Image.fromarray(boundary_img1) new_im.save("output//" + args.filename + "_side_boundary.png") # Find shape properties, output shape image (optional) shape_img = pcv.analyze_object(img=img, obj=obj, mask=mask) new_im = Image.fromarray(shape_img) new_im.save("output//" + args.filename + "_side_shape.png") GT = re.sub(pattern, replacement, files_names[file_counter]) pcv.outputs.add_observation(variable="genotype", trait="genotype", method="Regexed from the filename", scale=None, datatype=str, value=int(GT), label="GT") # Write shape and color data to results file pcv.print_results(filename=args.result_side)
def main(): # Get options args = options() # Set variables device = 0 pcv.params.debug = args.debug img_file = args.image # Read image img, path, filename = pcv.readimage(filename=img_file, mode='rgb') # Process saturation channel from HSV colour space s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') lp_s = pcv.laplace_filter(s, 1, 1) shrp_s = pcv.image_subtract(s, lp_s) s_eq = pcv.hist_equalization(shrp_s) s_thresh = pcv.threshold.binary(gray_img=s_eq, threshold=215, max_value=255, object_type='light') s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) # Process green-magenta channel from LAB colour space b = pcv.rgb2gray_lab(rgb_img=img, channel='a') b_lp = pcv.laplace_filter(b, 1, 1) b_shrp = pcv.image_subtract(b, b_lp) b_thresh = pcv.threshold.otsu(b_shrp, 255, object_type='dark') # Create and apply mask bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_thresh) filled = pcv.fill_holes(bs) masked = pcv.apply_mask(img=img, mask=filled, mask_color='white') # Extract colour channels from masked image masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=140, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images (OR) ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Produce and apply a mask opened_ab = pcv.opening(gray_img=ab) ab_fill = pcv.fill(bin_img=ab, size=200) closed_ab = pcv.closing(gray_img=ab_fill) masked2 = pcv.apply_mask(img=masked, mask=bs, mask_color='white') # Identify objects id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill) # Define region of interest (ROI) roi1, roi_hierarchy = pcv.roi.rectangle(img=masked2, x=250, y=100, h=200, w=200) # Decide what objects to keep roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects( img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') # Object combine kept objects obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) ############### Analysis ################ outfile = False if args.writeimg == True: outfile = args.outdir + "/" + filename # Analyze the plant analysis_image = pcv.analyze_object(img=img, obj=obj, mask=mask) color_histogram = pcv.analyze_color(rgb_img=img, mask=kept_mask, hist_plot_type='all') top_x, bottom_x, center_v_x = pcv.x_axis_pseudolandmarks(img=img, obj=obj, mask=mask) top_y, bottom_y, center_v_y = pcv.y_axis_pseudolandmarks(img=img, obj=obj, mask=mask) # Print results of the analysis pcv.print_results(filename=args.result) pcv.output_mask(img, kept_mask, filename, outdir=args.outdir, mask_only=True)
def test(true_positive_file, test_parameters): hue_lower_tresh = test_parameters[0] hue_higher_tresh = test_parameters[1] saturation_lower_tresh = test_parameters[2] saturation_higher_tresh = test_parameters[3] value_lower_tresh = test_parameters[4] value_higher_tresh = test_parameters[5] green_lower_tresh = test_parameters[6] green_higher_tresh = test_parameters[7] red_lower_tresh = test_parameters[8] red_higher_thresh = test_parameters[9] blue_lower_tresh = test_parameters[10] blue_higher_tresh = test_parameters[11] blur_k = test_parameters[12] fill_k = test_parameters[13] class args: #image = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\0214_2018-03-07 08.55 - 26_cam9.png" image = true_positive_file outdir = "C:\\Users\\RensD\\OneDrive\\studie\\Master\\The_big_project\\top_perspective\\output" debug = debug_setting result = "results.txt" # Get options pcv.params.debug=args.debug #set debug mode pcv.params.debug_outdir=args.outdir #set output directory # Read image (readimage mode defaults to native but if image is RGBA then specify mode='rgb') # Inputs: # filename - Image file to be read in # mode - Return mode of image; either 'native' (default), 'rgb', 'gray', or 'csv' img, path, filename = pcv.readimage(filename=args.image, mode='rgb') s = pcv.rgb2gray_hsv(rgb_img=img, channel='h') mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[hue_lower_tresh], upper_thresh=[hue_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=img, mask = mask, mask_color = 'white') #print("filtered on hue") s = pcv.rgb2gray_hsv(rgb_img=masked, channel='s') mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[saturation_lower_tresh], upper_thresh=[saturation_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white') #print("filtered on saturation") s = pcv.rgb2gray_hsv(rgb_img=masked, channel='v') mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[value_lower_tresh], upper_thresh=[value_higher_tresh], channel='gray') masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white') #print("filtered on value") mask, masked = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[0,green_lower_tresh,0], upper_thresh=[255,green_higher_tresh,255], channel='RGB') masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white') #print("filtered on green") mask, masked = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[red_lower_tresh,0,0], upper_thresh=[red_higher_thresh,255,255], channel='RGB') masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white') #print("filtered on red") mask_old, masked_old = pcv.threshold.custom_range(rgb_img=masked, lower_thresh=[0,0,blue_lower_tresh], upper_thresh=[255,255,blue_higher_tresh], channel='RGB') masked = pcv.apply_mask(rgb_img=masked_old, mask = mask_old, mask_color = 'white') #print("filtered on blue") ###____________________________________ Blur to minimize try: s_mblur = pcv.median_blur(gray_img = masked_old, ksize = blur_k) s = pcv.rgb2gray_hsv(rgb_img=s_mblur, channel='v') mask, masked_image = pcv.threshold.custom_range(rgb_img=s, lower_thresh=[0], upper_thresh=[254], channel='gray') except: print("failed blur step") try: mask = pcv.fill(mask, fill_k) except: pass masked = pcv.apply_mask(rgb_img=masked, mask = mask, mask_color = 'white') ###_____________________________________ Now to identify objects masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Fill small objects # Inputs: # bin_img - Binary image data # size - Minimum object area size in pixels (must be an integer), and smaller objects will be filled ab_fill = pcv.fill(bin_img=ab, size=200) #print("filled") # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(rgb_img=masked, mask=ab_fill, mask_color='white') id_objects, obj_hierarchy = pcv.find_objects(masked, ab_fill) # Let's just take the largest roi1, roi_hierarchy= pcv.roi.rectangle(img=masked, x=0, y=0, h=960, w=1280) # Currently hardcoded with HiddenPrints(): roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type=roi_type) obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) if use_mask == True: return(mask) else: masked2 = pcv.apply_mask(rgb_img=masked, mask=mask, mask_color='white') return(masked2)
def segmentation(imgW, imgNIR, shape): # VIS example from PlantCV with few modifications # Higher value = more strict selection s_threshold = 165 b_threshold = 200 # Read image img = imread(imgW) #img = cvtColor(img, COLOR_BGR2RGB) imgNIR = imread(imgNIR) #imgNIR = cvtColor(imgNIR, COLOR_BGR2RGB) #img, path, img_filename = pcv.readimage(filename=imgW, mode="native") #imgNIR, pathNIR, imgNIR_filename = pcv.readimage(filename=imgNIR, mode="native") # Convert RGB to HSV and extract the saturation channel s = pcv.rgb2gray_hsv(rgb_img=img, channel='s') # Threshold the saturation image s_thresh = pcv.threshold.binary(gray_img=s, threshold=s_threshold, max_value=255, object_type='light') # Median Blur s_mblur = pcv.median_blur(gray_img=s_thresh, ksize=5) s_cnt = pcv.median_blur(gray_img=s_thresh, ksize=5) # Convert RGB to LAB and extract the Blue channel b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Threshold the blue image ORIGINAL 160 b_thresh = pcv.threshold.binary(gray_img=b, threshold=b_threshold, max_value=255, object_type='light') b_cnt = pcv.threshold.binary(gray_img=b, threshold=b_threshold, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images bs = pcv.logical_or(bin_img1=s_mblur, bin_img2=b_cnt) # Apply Mask (for VIS images, mask_color=white) masked = pcv.apply_mask(img=img, mask=bs, mask_color='white') # Convert RGB to LAB and extract the Green-Magenta and Blue-Yellow channels masked_a = pcv.rgb2gray_lab(rgb_img=masked, channel='a') masked_b = pcv.rgb2gray_lab(rgb_img=masked, channel='b') # Threshold the green-magenta and blue images # 115 # 135 # 128 maskeda_thresh = pcv.threshold.binary(gray_img=masked_a, threshold=115, max_value=255, object_type='dark') maskeda_thresh1 = pcv.threshold.binary(gray_img=masked_a, threshold=135, max_value=255, object_type='light') maskedb_thresh = pcv.threshold.binary(gray_img=masked_b, threshold=128, max_value=255, object_type='light') # Join the thresholded saturation and blue-yellow images (OR) ab1 = pcv.logical_or(bin_img1=maskeda_thresh, bin_img2=maskedb_thresh) ab = pcv.logical_or(bin_img1=maskeda_thresh1, bin_img2=ab1) # Fill small objects ab_fill = pcv.fill(bin_img=ab, size=200) # Apply mask (for VIS images, mask_color=white) masked2 = pcv.apply_mask(img=masked, mask=ab_fill, mask_color='white') # Identify objects id_objects, obj_hierarchy = pcv.find_objects(img=masked2, mask=ab_fill) # Define ROI height = shape[0] width = shape[1] roi1, roi_hierarchy= pcv.roi.rectangle(img=masked2, x=0, y=0, h=height, w=width) # Decide which objects to keep roi_objects, hierarchy3, kept_mask, obj_area = pcv.roi_objects(img=img, roi_contour=roi1, roi_hierarchy=roi_hierarchy, object_contour=id_objects, obj_hierarchy=obj_hierarchy, roi_type='partial') # Object combine kept objects obj, mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy3) # Filling holes in the mask, works great for alive plants, not so good for dead plants filled_mask = pcv.fill_holes(mask) final = pcv.apply_mask(img=imgNIR, mask=mask, mask_color='white') pcv.print_image(final, "./segment/segment-temp.png")
def main(): # create options object for argument parsing args = options() # set device device = 0 # set debug pcv.params.debug = args.debug outfile = False if args.writeimg: outfile = os.path.join(args.outdir, os.path.basename(args.image)[:-4]) # read in image img, path, filename = pcv.readimage(filename=args.image, debug=args.debug) # read in a background image for each zoom level config_file = open(args.bkg, 'r') config = json.load(config_file) config_file.close() if "z1500" in args.image: bkg_image = config["z1500"] elif "z2500" in args.image: bkg_image = config["z2500"] else: pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image)) bkg, bkg_path, bkg_filename = pcv.readimage(filename=bkg_image, debug=args.debug) # Detect edges in the background image device, bkg_sat = pcv.rgb2gray_hsv(img=bkg, channel="s", device=device, debug=args.debug) device += 1 bkg_edges = feature.canny(bkg_sat) if args.debug == "print": pcv.print_image(img=bkg_edges, filename=str(device) + '_background_edges.png') elif args.debug == "plot": pcv.plot_image(img=bkg_edges, cmap="gray") # Close background edge contours bkg_edges_closed = ndi.binary_closing(bkg_edges) device += 1 if args.debug == "print": pcv.print_image(img=bkg_edges_closed, filename=str(device) + '_closed_background_edges.png') elif args.debug == "plot": pcv.plot_image(img=bkg_edges_closed, cmap="gray") # Fill in closed contours in background bkg_fill_contours = ndi.binary_fill_holes(bkg_edges_closed) device += 1 if args.debug == "print": pcv.print_image(img=bkg_fill_contours, filename=str(device) + '_filled_background_edges.png') elif args.debug == "plot": pcv.plot_image(img=bkg_fill_contours, cmap="gray") # Naive Bayes image classification/segmentation device, mask = pcv.naive_bayes_classifier(img=img, pdf_file=args.pdf, device=device, debug=args.debug) # Do a light cleaning of the plant mask to remove small objects cleaned = morphology.remove_small_objects(mask["plant"].astype(bool), 2) device += 1 if args.debug == "print": pcv.print_image(img=cleaned, filename=str(device) + '_cleaned_mask.png') elif args.debug == "plot": pcv.plot_image(img=cleaned, cmap="gray") # Convert the input image to a saturation channel grayscale image device, sat = pcv.rgb2gray_hsv(img=img, channel="s", device=device, debug=args.debug) # Detect edges in the saturation image edges = feature.canny(sat) device += 1 if args.debug == "print": pcv.print_image(img=edges, filename=str(device) + '_plant_edges.png') elif args.debug == "plot": pcv.plot_image(img=edges, cmap="gray") # Combine pixels that are in both foreground edges and the filled background edges device, combined_bkg = pcv.logical_and(img1=edges.astype(np.uint8) * 255, img2=bkg_fill_contours.astype(np.uint8) * 255, device=device, debug=args.debug) # Remove background pixels from the foreground edges device += 1 filtered = np.copy(edges) filtered[np.where(combined_bkg == 255)] = False if args.debug == "print": pcv.print_image(img=filtered, filename=str(device) + '_filtered_edges.png') elif args.debug == "plot": pcv.plot_image(img=filtered, cmap="gray") # Combine the cleaned naive Bayes mask and the filtered foreground edges device += 1 combined = cleaned + filtered if args.debug == "print": pcv.print_image(img=combined, filename=str(device) + '_combined_foreground.png') elif args.debug == "plot": pcv.plot_image(img=combined, cmap="gray") # Close off broken edges and other incomplete contours device += 1 closed_features = ndi.binary_closing(combined, structure=np.ones((3, 3))) if args.debug == "print": pcv.print_image(img=closed_features, filename=str(device) + '_closed_features.png') elif args.debug == "plot": pcv.plot_image(img=closed_features, cmap="gray") # Fill in holes in contours # device += 1 # fill_contours = ndi.binary_fill_holes(closed_features) # if args.debug == "print": # pcv.print_image(img=fill_contours, filename=str(device) + '_filled_contours.png') # elif args.debug == "plot": # pcv.plot_image(img=fill_contours, cmap="gray") # Use median blur to break horizontal and vertical thin edges (pot edges) device += 1 blurred_img = ndi.median_filter(closed_features.astype(np.uint8) * 255, (3, 1)) blurred_img = ndi.median_filter(blurred_img, (1, 3)) # Remove small objects left behind by blurring cleaned2 = morphology.remove_small_objects(blurred_img.astype(bool), 200) if args.debug == "print": pcv.print_image(img=cleaned2, filename=str(device) + '_cleaned_by_median_blur.png') elif args.debug == "plot": pcv.plot_image(img=cleaned2, cmap="gray") # Define region of interest based on camera zoom level for masking the naive Bayes classified image # if "z1500" in args.image: # h = 1000 # elif "z2500" in args.image: # h = 1050 # else: # pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image)) # roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img) # Mask the classified image to remove noisy areas prior to finding contours # side_mask = np.zeros(np.shape(img)[:2], dtype=np.uint8) # cv2.drawContours(side_mask, roi, -1, (255), -1) # device, masked_img = pcv.apply_mask(img=cv2.merge([mask["plant"], mask["plant"], mask["plant"]]), mask=side_mask, # mask_color="black", device=device, debug=args.debug) # Convert the masked image back to grayscale # masked_img = masked_img[:, :, 0] # Close off contours at the base of the plant # if "z1500" in args.image: # pt1 = (1100, 1118) # pt2 = (1340, 1120) # elif "z2500" in args.image: # pt1 = (1020, 1162) # pt2 = (1390, 1166) # else: # pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image)) # masked_img = cv2.rectangle(np.copy(masked_img), pt1, pt2, (255), -1) # closed_mask = ndi.binary_closing(masked_img.astype(bool), iterations=3) # Find objects in the masked naive Bayes mask # device, objects, obj_hierarchy = pcv.find_objects(img=img, mask=np.copy(masked_img), device=device, # debug=args.debug) # objects, obj_hierarchy = cv2.findContours(np.copy(closed_mask.astype(np.uint8) * 255), cv2.RETR_CCOMP, # cv2.CHAIN_APPROX_NONE)[-2:] # Clean up the combined plant edges/mask image by removing filled in gaps/holes # device += 1 # cleaned3 = np.copy(cleaned2) # cleaned3 = cleaned3.astype(np.uint8) * 255 # # Loop over the contours from the naive Bayes mask # for c, contour in enumerate(objects): # # Calculate the area of each contour # # area = cv2.contourArea(contour) # # If the contour is a hole (i.e. it has no children and it has a parent) # # And it is not a small hole in a leaf that was not classified # if obj_hierarchy[0][c][2] == -1 and obj_hierarchy[0][c][3] > -1: # # Then fill in the contour (hole) black on the cleaned mask # cv2.drawContours(cleaned3, objects, c, (0), -1, hierarchy=obj_hierarchy) # if args.debug == "print": # pcv.print_image(img=cleaned3, filename=str(device) + '_gaps_removed.png') # elif args.debug == "plot": # pcv.plot_image(img=cleaned3, cmap="gray") # Find contours using the cleaned mask device, contours, contour_hierarchy = pcv.find_objects(img=img, mask=np.copy(cleaned2.astype(np.uint8)), device=device, debug=args.debug) # Define region of interest based on camera zoom level for contour filtering if "z1500" in args.image: h = 940 elif "z2500" in args.image: h = 980 else: pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image)) roi, roi_hierarchy = pcv.roi.rectangle(x=300, y=150, w=1850, h=h, img=img) # Filter contours in the region of interest device, roi_objects, hierarchy, kept_mask, obj_area = pcv.roi_objects(img=img, roi_type='partial', roi_contour=roi, roi_hierarchy=roi_hierarchy, object_contour=contours, obj_hierarchy=contour_hierarchy, device=device, debug=args.debug) # Analyze only images with plants present if len(roi_objects) > 0: # Object combine kept objects device, plant_contour, plant_mask = pcv.object_composition(img=img, contours=roi_objects, hierarchy=hierarchy, device=device, debug=args.debug) if args.writeimg: # Save the plant mask if requested pcv.print_image(img=plant_mask, filename=outfile + "_mask.png") # Find shape properties, output shape image device, shape_header, shape_data, shape_img = pcv.analyze_object(img=img, imgname=args.image, obj=plant_contour, mask=plant_mask, device=device, debug=args.debug, filename=outfile) # Set the boundary line based on the camera zoom level if "z1500" in args.image: line_position = 930 elif "z2500" in args.image: line_position = 885 else: pcv.fatal_error("Image {0} has an unsupported zoom level.".format(args.image)) # Shape properties relative to user boundary line device, boundary_header, boundary_data, boundary_img = pcv.analyze_bound_horizontal(img=img, obj=plant_contour, mask=plant_mask, line_position=line_position, device=device, debug=args.debug, filename=outfile) # Determine color properties: Histograms, Color Slices and Pseudocolored Images, # output color analyzed images device, color_header, color_data, color_img = pcv.analyze_color(img=img, imgname=args.image, mask=plant_mask, bins=256, device=device, debug=args.debug, hist_plot_type=None, pseudo_channel="v", pseudo_bkg="img", resolution=300, filename=outfile) # Output shape and color data result = open(args.result, "a") result.write('\t'.join(map(str, shape_header)) + "\n") result.write('\t'.join(map(str, shape_data)) + "\n") for row in shape_img: result.write('\t'.join(map(str, row)) + "\n") result.write('\t'.join(map(str, color_header)) + "\n") result.write('\t'.join(map(str, color_data)) + "\n") result.write('\t'.join(map(str, boundary_header)) + "\n") result.write('\t'.join(map(str, boundary_data)) + "\n") result.write('\t'.join(map(str, boundary_img)) + "\n") for row in color_img: result.write('\t'.join(map(str, row)) + "\n") result.close()
def main(): args = options() os.chdir(args.outdir) # Read RGB image img, path, filename = pcv.readimage(args.image, mode="native") # Get metadata from file name geno_name = filename.split("}{") geno_name = geno_name[5] geno_name = geno_name.split("_") geno_name = geno_name[1] day = filename.split("}{") day = day[7] day = day.split("_") day = day[1] day = day.split("}") day = day[0] plot = filename.split("}{") plot = plot[0] plot = plot.split("_") plot = plot[1] exp_name = filename.split("}{") exp_name = exp_name[1] exp_name = exp_name.split("_") exp_name = exp_name[1] treat_name = filename.split("}{") treat_name = treat_name[6] # Create masks using Naive Bayes Classifier and PDFs file masks = pcv.naive_bayes_classifier(img, args.pdfs) # The following code will identify the racks in the image, find the top edge, and choose a line along the edge to pick a y coordinate to trim any soil/pot pixels identified as plant material. # Convert RGB to HSV and extract the Value channel v = pcv.rgb2gray_hsv(img, 'v') # Threshold the Value image v_thresh = pcv.threshold.binary(v, 98, 255, 'light') # Dilate mask to fill holes dilate_racks = pcv.dilate(v_thresh, 2, 1) # Fill in small objects mask = np.copy(dilate_racks) fill_racks = pcv.fill(mask, 100000) #edge detection edges = cv2.Canny(fill_racks, 60, 180) #write all the straight lines from edge detection lines = cv2.HoughLinesP(edges, rho=1, theta=1 * np.pi / 180, threshold=150, minLineLength=50, maxLineGap=15) N = lines.shape[0] for i in range(N): x1 = lines[i][0][0] y1 = lines[i][0][1] x2 = lines[i][0][2] y2 = lines[i][0][3] cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 2) # keep only horizontal lines N = lines.shape[0] tokeep = [] for i in range(N): want = (abs(lines[i][0][1] - lines[i][0][3])) <= 10 tokeep.append(want) lines = lines[tokeep] # keep only lines in lower half of image N = lines.shape[0] tokeep = [] for i in range(N): want = 3100 > lines[i][0][1] > 2300 tokeep.append(want) lines = lines[tokeep] # assign lines to positions around plants N = lines.shape[0] tokeep = [] left = [] mid = [] right = [] for i in range(N): leftones = lines[i][0][2] <= 2000 left.append(leftones) midones = 3000 > lines[i][0][2] > 2000 mid.append(midones) rightones = lines[i][0][0] >= 3300 right.append(rightones) right = lines[right] left = lines[left] mid = lines[mid] # choose y values for right left mid adding some pixels to go about the pot (subtract because of orientation of axis) y_left = left[0][0][3] - 50 y_mid = mid[0][0][3] - 50 y_right = right[0][0][3] - 50 # reload original image to write new lines on img, path, filename = pcv.readimage(args.image) # write horizontal lines on image cv2.line(img, (left[0][0][0], left[0][0][1]), (left[0][0][2], left[0][0][3]), (255, 255, 51), 2) cv2.line(img, (mid[0][0][0], mid[0][0][1]), (mid[0][0][2], mid[0][0][3]), (255, 255, 51), 2) cv2.line(img, (right[0][0][0], right[0][0][1]), (right[0][0][2], right[0][0][3]), (255, 255, 51), 2) # Add masks together added = masks["healthy"] + masks["necrosis"] + masks["stem"] # Dilate mask to fill holes dilate_img = pcv.dilate(added, 2, 1) # Fill in small objects mask = np.copy(dilate_img) fill_img = pcv.fill(mask, 400) ret, inverted = cv2.threshold(fill_img, 75, 255, cv2.THRESH_BINARY_INV) # Dilate mask to fill holes of plant dilate_inv = pcv.dilate(inverted, 2, 1) # Fill in small objects of plant mask2 = np.copy(dilate_inv) fill_plant = pcv.fill(mask2, 20) inverted_img = pcv.invert(fill_plant) # Identify objects id_objects, obj_hierarchy = pcv.find_objects(img, inverted_img) # Define ROIs roi_left, roi_hierarchy_left = pcv.roi.rectangle(280, 1280, 1275, 1200, img) roi_mid, roi_hierarchy_mid = pcv.roi.rectangle(1900, 1280, 1275, 1200, img) roi_right, roi_hierarchy_right = pcv.roi.rectangle(3600, 1280, 1275, 1200, img) # Decide which objects to keep roi_objects_left, roi_obj_hierarchy_left, kept_mask_left, obj_area_left = pcv.roi_objects( img, 'partial', roi_left, roi_hierarchy_left, id_objects, obj_hierarchy) roi_objects_mid, roi_obj_hierarchy_mid, kept_mask_mid, obj_area_mid = pcv.roi_objects( img, 'partial', roi_mid, roi_hierarchy_mid, id_objects, obj_hierarchy) roi_objects_right, roi_obj_hierarchy_right, kept_mask_right, obj_area_right = pcv.roi_objects( img, 'partial', roi_right, roi_hierarchy_right, id_objects, obj_hierarchy) # Combine objects obj_r, mask_r = pcv.object_composition(img, roi_objects_right, roi_obj_hierarchy_right) obj_m, mask_m = pcv.object_composition(img, roi_objects_mid, roi_obj_hierarchy_mid) obj_l, mask_l = pcv.object_composition(img, roi_objects_left, roi_obj_hierarchy_left) def analyze_bound_horizontal2(img, obj, mask, line_position, filename=False): ori_img = np.copy(img) # Draw line horizontal line through bottom of image, that is adjusted to user input height if len(np.shape(ori_img)) == 3: iy, ix, iz = np.shape(ori_img) else: iy, ix = np.shape(ori_img) size = (iy, ix) size1 = (iy, ix, 3) background = np.zeros(size, dtype=np.uint8) wback = np.zeros(size1, dtype=np.uint8) x_coor = int(ix) y_coor = int(iy) - int(line_position) rec_corner = int(iy - 2) rec_point1 = (1, rec_corner) rec_point2 = (x_coor - 2, y_coor - 2) cv2.rectangle(background, rec_point1, rec_point2, (255), 1) below_contour, below_hierarchy = cv2.findContours( background, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[-2:] below = [] above = [] mask_nonzerox, mask_nonzeroy = np.nonzero(mask) obj_points = np.vstack((mask_nonzeroy, mask_nonzerox)) obj_points1 = np.transpose(obj_points) for i, c in enumerate(obj_points1): xy = tuple(c) pptest = cv2.pointPolygonTest(below_contour[0], xy, measureDist=False) if pptest == 1: below.append(xy) cv2.circle(ori_img, xy, 1, (0, 0, 255)) cv2.circle(wback, xy, 1, (0, 0, 0)) else: above.append(xy) cv2.circle(ori_img, xy, 1, (0, 255, 0)) cv2.circle(wback, xy, 1, (255, 255, 255)) return wback ori_img = np.copy(img) # Draw line horizontal line through bottom of image, that is adjusted to user input height if len(np.shape(ori_img)) == 3: iy, ix, iz = np.shape(ori_img) else: iy, ix = np.shape(ori_img) if obj_r is not None: wback_r = analyze_bound_horizontal2(img, obj_r, mask_r, iy - y_right) if obj_m is not None: wback_m = analyze_bound_horizontal2(img, obj_m, mask_m, iy - y_mid) if obj_l is not None: wback_l = analyze_bound_horizontal2(img, obj_l, mask_l, iy - y_left) threshold_light = pcv.threshold.binary(img, 1, 1, 'dark') if obj_r is not None: fgmask_r = pcv.background_subtraction(wback_r, threshold_light) if obj_m is not None: fgmask_m = pcv.background_subtraction(wback_m, threshold_light) if obj_l is not None: fgmask_l = pcv.background_subtraction(wback_l, threshold_light) if obj_l is not None: id_objects_left, obj_hierarchy_left = pcv.find_objects(img, fgmask_l) if obj_m is not None: id_objects_mid, obj_hierarchy_mid = pcv.find_objects(img, fgmask_m) if obj_r is not None: id_objects_right, obj_hierarchy_right = pcv.find_objects(img, fgmask_r) # Combine objects if obj_r is not None: obj_r2, mask_r2 = pcv.object_composition(img, id_objects_right, obj_hierarchy_right) if obj_m is not None: obj_m2, mask_m2 = pcv.object_composition(img, id_objects_mid, obj_hierarchy_mid) if obj_l is not None: obj_l2, mask_l2 = pcv.object_composition(img, id_objects_left, obj_hierarchy_left) # Shape measurements if obj_l is not None: shape_header_left, shape_data_left, shape_img_left = pcv.analyze_object( img, obj_l2, fgmask_l, geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' + 'shape.jpg') if obj_r is not None: shape_header_right, shape_data_right, shape_img_right = pcv.analyze_object( img, obj_r2, fgmask_r, geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' + 'shape.jpg') if obj_m is not None: shape_header_mid, shape_data_mid, shape_img_mid = pcv.analyze_object( img, obj_m2, fgmask_m, geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' + 'shape.jpg') # Color data if obj_r is not None: color_header_right, color_data_right, norm_slice_right = pcv.analyze_color( img, fgmask_r, 256, None, 'v', 'img', geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' + 'color.jpg') if obj_m is not None: color_header_mid, color_data_mid, norm_slice_mid = pcv.analyze_color( img, fgmask_m, 256, None, 'v', 'img', geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' + 'color.jpg') if obj_l is not None: color_header_left, color_data_left, norm_slice_left = pcv.analyze_color( img, fgmask_l, 256, None, 'v', 'img', geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' + 'color.jpg') new_header = [ 'experiment', 'day', 'genotype', 'treatment', 'plot', 'plant', 'percent.necrosis', 'area', 'hull-area', 'solidity', 'perimeter', 'width', 'height', 'longest_axis', 'center-of-mass-x', 'center-of-mass-y', 'hull_vertices', 'in_bounds', 'ellipse_center_x', 'ellipse_center_y', 'ellipse_major_axis', 'ellipse_minor_axis', 'ellipse_angle', 'ellipse_eccentricity', 'bin-number', 'bin-values', 'blue', 'green', 'red', 'lightness', 'green-magenta', 'blue-yellow', 'hue', 'saturation', 'value' ] table = [] table.append(new_header) added2 = masks["healthy"] + masks["stem"] # Object combine kept objects if obj_l is not None: masked_image_healthy_left = pcv.apply_mask(added2, fgmask_l, 'black') masked_image_necrosis_left = pcv.apply_mask(masks["necrosis"], fgmask_l, 'black') added_obj_left = masked_image_healthy_left + masked_image_necrosis_left sample = "A" # Calculations necrosis_left = np.sum(masked_image_necrosis_left) necrosis_percent_left = float(necrosis_left) / np.sum(added_obj_left) table.append([ exp_name, day, geno_name, treat_name, plot, sample, round(necrosis_percent_left, 5), shape_data_left[1], shape_data_left[2], shape_data_left[3], shape_data_left[4], shape_data_left[5], shape_data_left[6], shape_data_left[7], shape_data_left[8], shape_data_left[9], shape_data_left[10], shape_data_left[11], shape_data_left[12], shape_data_left[13], shape_data_left[14], shape_data_left[15], shape_data_left[16], shape_data_left[17], '"{}"'.format(color_data_left[1]), '"{}"'.format(color_data_left[2]), '"{}"'.format( color_data_left[3]), '"{}"'.format(color_data_left[4]), '"{}"'.format(color_data_left[5]), '"{}"'.format( color_data_left[6]), '"{}"'.format(color_data_left[7]), '"{}"'.format(color_data_left[8]), '"{}"'.format( color_data_left[9]), '"{}"'.format(color_data_left[10]), '"{}"'.format(color_data_left[11]) ]) # Object combine kept objects if obj_m is not None: masked_image_healthy_mid = pcv.apply_mask(added2, fgmask_m, 'black') masked_image_necrosis_mid = pcv.apply_mask(masks["necrosis"], fgmask_m, 'black') added_obj_mid = masked_image_healthy_mid + masked_image_necrosis_mid sample = "B" # Calculations necrosis_mid = np.sum(masked_image_necrosis_mid) necrosis_percent_mid = float(necrosis_mid) / np.sum(added_obj_mid) table.append([ exp_name, day, geno_name, treat_name, plot, sample, round(necrosis_percent_mid, 5), shape_data_mid[1], shape_data_mid[2], shape_data_mid[3], shape_data_mid[4], shape_data_mid[5], shape_data_mid[6], shape_data_mid[7], shape_data_mid[8], shape_data_mid[9], shape_data_mid[10], shape_data_mid[11], shape_data_mid[12], shape_data_mid[13], shape_data_mid[14], shape_data_mid[15], shape_data_mid[16], shape_data_mid[17], '"{}"'.format(color_data_mid[1]), '"{}"'.format(color_data_mid[2]), '"{}"'.format(color_data_mid[3]), '"{}"'.format(color_data_mid[4]), '"{}"'.format(color_data_mid[5]), '"{}"'.format(color_data_mid[6]), '"{}"'.format(color_data_mid[7]), '"{}"'.format(color_data_mid[8]), '"{}"'.format(color_data_mid[9]), '"{}"'.format( color_data_mid[10]), '"{}"'.format(color_data_mid[11]) ]) # Object combine kept objects if obj_r is not None: masked_image_healthy_right = pcv.apply_mask(added2, fgmask_r, 'black') masked_image_necrosis_right = pcv.apply_mask(masks["necrosis"], fgmask_r, 'black') added_obj_right = masked_image_healthy_right + masked_image_necrosis_right sample = "C" # Calculations necrosis_right = np.sum(masked_image_necrosis_right) necrosis_percent_right = float(necrosis_right) / np.sum( added_obj_right) table.append([ exp_name, day, geno_name, treat_name, plot, sample, round(necrosis_percent_right, 5), shape_data_right[1], shape_data_right[2], shape_data_right[3], shape_data_right[4], shape_data_right[5], shape_data_right[6], shape_data_right[7], shape_data_right[8], shape_data_right[9], shape_data_right[10], shape_data_right[11], shape_data_right[12], shape_data_right[13], shape_data_right[14], shape_data_right[15], shape_data_right[16], shape_data_right[17], '"{}"'.format(color_data_right[1]), '"{}"'.format(color_data_right[2]), '"{}"'.format( color_data_right[3]), '"{}"'.format(color_data_right[4]), '"{}"'.format(color_data_right[5]), '"{}"'.format( color_data_right[6]), '"{}"'.format(color_data_right[7]), '"{}"'.format(color_data_right[8]), '"{}"'.format( color_data_right[9]), '"{}"'.format(color_data_right[10]), '"{}"'.format(color_data_right[11]) ]) if obj_l is not None: merged2 = cv2.merge([ masked_image_healthy_left, np.zeros(np.shape(masks["healthy"]), dtype=np.uint8), masked_image_necrosis_left ]) #blue, green, red pcv.print_image( merged2, geno_name + '_' + plot + '_' + 'A' + '_' + day + '_' + 'merged.jpg') if obj_m is not None: merged3 = cv2.merge([ masked_image_healthy_mid, np.zeros(np.shape(masks["healthy"]), dtype=np.uint8), masked_image_necrosis_mid ]) #blue, green, red pcv.print_image( merged3, geno_name + '_' + plot + '_' + 'B' + '_' + day + '_' + 'merged.jpg') if obj_r is not None: merged4 = cv2.merge([ masked_image_healthy_right, np.zeros(np.shape(masks["healthy"]), dtype=np.uint8), masked_image_necrosis_right ]) #blue, green, red pcv.print_image( merged4, geno_name + '_' + plot + '_' + 'C' + '_' + day + '_' + 'merged.jpg') # Save area results to file (individual csv files for one image...) file_name = filename.split("}{") file_name = file_name[0] + "}{" + file_name[5] + "}{" + file_name[7] outfile = str(file_name[:-4]) + 'csv' with open(outfile, 'w') as f: for row in table: f.write(','.join(map(str, row)) + '\n') print(filename)
def main(): # Get options args = options() debug = args.debug # Read image img, path, filename = pcv.readimage(args.image) # Pipeline step device = 0 device, img1 = pcv.white_balance(device, img, debug, (100, 100, 1000, 1000)) img = img1 #seedmask, path1, filename1 = pcv.readimage(args.mask) #device, seedmask = pcv.rgb2gray(seedmask, device, debug) #device, inverted = pcv.invert(seedmask, device, debug) #device, masked_img = pcv.apply_mask(img, inverted, 'white', device, debug) device, img_gray_sat = pcv.rgb2gray_hsv(img1, 's', device, debug) device, img_binary = pcv.binary_threshold(img_gray_sat, 70, 255, 'light', device, debug) img_binary1 = np.copy(img_binary) device, fill_image = pcv.fill(img_binary1, img_binary, 300, device, debug) device, seed_objects, seed_hierarchy = pcv.find_objects( img, fill_image, device, debug) device, roi1, roi_hierarchy1 = pcv.define_roi(img, 'rectangle', device, None, 'default', debug, True, 1500, 1000, -1000, -500) device, roi_objects, roi_obj_hierarchy, kept_mask, obj_area = pcv.roi_objects( img, 'partial', roi1, roi_hierarchy1, seed_objects, seed_hierarchy, device, debug) img_copy = np.copy(img) for i in range(0, len(roi_objects)): rand_color = pcv.color_palette(1) cv2.drawContours(img_copy, roi_objects, i, rand_color[0], -1, lineType=8, hierarchy=roi_obj_hierarchy) pcv.print_image( img_copy, os.path.join(args.outdir, filename[:-4]) + "-seed-confetti.jpg") shape_header = [] # Store the table header table = [] # Store the PlantCV measurements for each seed in a table for i in range(0, len(roi_objects)): if roi_obj_hierarchy[0][i][ 3] == -1: # Only continue if the object is an outermost contour # Object combine kept objects # Inputs: # contours = object list # device = device number. Used to count steps in the pipeline # debug = None, print, or plot. Print = save to file, Plot = print to screen. device, obj, mask = pcv.object_composition( img, [roi_objects[i]], np.array([[roi_obj_hierarchy[0][i]]]), device, None) if obj is not None: # Measure the area and other shape properties of each seed # Inputs: # img = image object (most likely the original), color(RGB) # imgname = name of image # obj = single or grouped contour object # device = device number. Used to count steps in the pipeline # debug = None, print, or plot. Print = save to file, Plot = print to screen. # filename = False or image name. If defined print image device, shape_header, shape_data, shape_img = pcv.analyze_object( img, "img", obj, mask, device, None) if shape_data is not None: table.append(shape_data[1]) data_array = np.array(table) maxval = np.argmax(data_array) maxseed = np.copy(img) cv2.drawContours(maxseed, roi_objects, maxval, (0, 255, 0), 10) imgtext = "This image has " + str(len(data_array)) + " seeds" sizeseed = "The largest seed is in green and is " + str( data_array[maxval]) + " pixels" cv2.putText(maxseed, imgtext, (500, 300), cv2.FONT_HERSHEY_SIMPLEX, 5, (0, 0, 0), 10) cv2.putText(maxseed, sizeseed, (500, 600), cv2.FONT_HERSHEY_SIMPLEX, 5, (0, 0, 0), 10) pcv.print_image(maxseed, os.path.join(args.outdir, filename[:-4]) + "-maxseed.jpg")