def load_trainer(self): """Setting up the global model to be trained via federated learning.""" if self.trainer is None: self.trainer = trainers_registry.get(model=self.model) self.trainer.set_client_id(0) if self.algorithm is None: self.algorithm = algorithms_registry.get(self.trainer)
def configure(self) -> None: """Prepare this client for training.""" super().configure() if self.trainer is None: self.trainer = trainers_registry.get(self.model) self.trainer.set_client_id(self.client_id) if self.algorithm is None: self.algorithm = algorithms_registry.get(self.trainer) self.algorithm.set_client_id(self.client_id) # Pass inbound and outbound data payloads through processors for # additional data processing self.outbound_processor, self.inbound_processor = processor_registry.get( "Client", client_id=self.client_id, trainer=self.trainer)