コード例 #1
0
    def calibrate_section(self, sec):
        if 'bg_task' in sec:
            sec['bg_task'].cancel()

        sec['status'] = 'Starting calibration' # This will be overwritten on success

        try:
            sec['gaze'].clear()
            sec['gaze_ts'].clear()
        except KeyError:
            sec['gaze'] = collections.deque()
            sec['gaze_ts'] = collections.deque()

        calibration_window = pm.exact_window(self.g_pool.timestamps, sec['calibration_range'])
        mapping_window = pm.exact_window(self.g_pool.timestamps, sec['mapping_range'])

        calibration_pupil_pos = self.g_pool.pupil_positions.by_ts_window(calibration_window)
        mapping_pupil_pos = self.g_pool.pupil_positions.by_ts_window(mapping_window)

        if sec['calibration_method'] == 'circle_marker':
            ref_list = self.circle_marker_positions
        elif sec['calibration_method'] == 'natural_features':
            ref_list = self.manual_ref_positions

        start = sec['calibration_range'][0]
        end = sec['calibration_range'][1]
        ref_list = [r for r in ref_list if start <= r['index'] <= end]

        if not len(calibration_pupil_pos):
            logger.error('No pupil data to calibrate section "{}"'.format(self.sections.index(sec) + 1))
            sec['status'] = 'Calibration failed. Not enough pupil positions.'
            return

        if not ref_list:
            logger.error('No referece marker data to calibrate section "{}"'.format(self.sections.index(sec) + 1))
            sec['status'] = 'Calibration failed. Not enough reference positions.'
            return

        if sec["mapping_method"] == '3d' and '2d' in calibration_pupil_pos[len(calibration_pupil_pos)//2]['method']:
            # select median pupil datum from calibration list and use its detection method as mapping method
            logger.warning("Pupil data is 2d, calibration and mapping mode forced to 2d.")
            sec["mapping_method"] = '2d'

        fake = setup_fake_pool(self.g_pool.capture.frame_size,
                               self.g_pool.capture.intrinsics,
                               sec["mapping_method"],
                               self.g_pool.rec_dir,
                               self.g_pool.min_calibration_confidence)

        calibration_pupil_pos = [pp.serialized for pp in calibration_pupil_pos]
        mapping_pupil_pos = [pp.serialized for pp in mapping_pupil_pos]

        generator_args = (fake, ref_list, calibration_pupil_pos, mapping_pupil_pos, sec['x_offset'], sec['y_offset'])

        logger.info('Calibrating section {} ({}) in {} mode...'.format(self.sections.index(sec) + 1, sec['label'], sec["mapping_method"]))
        sec['bg_task'] = bh.Task_Proxy('{}'.format(self.sections.index(sec) + 1), calibrate_and_map, args=generator_args)
コード例 #2
0
ファイル: player.py プロジェクト: pupil-labs/pupil
        def do_export(_):
            left_idx = g_pool.seek_control.trim_left
            right_idx = g_pool.seek_control.trim_right
            export_range = left_idx, right_idx + 1  # exclusive range.stop
            export_ts_window = pm.exact_window(g_pool.timestamps, (left_idx, right_idx))

            export_dir = os.path.join(g_pool.rec_dir, "exports")
            export_dir = next_export_sub_dir(export_dir)

            os.makedirs(export_dir)
            logger.info('Created export dir at "{}"'.format(export_dir))

            export_info = {
                "Player Software Version": str(g_pool.version),
                "Data Format Version": meta_info["Data Format Version"],
                "Export Date": strftime("%d.%m.%Y", localtime()),
                "Export Time": strftime("%H:%M:%S", localtime()),
                "Frame Index Range:": g_pool.seek_control.get_frame_index_trim_range_string(),
                "Relative Time Range": g_pool.seek_control.get_rel_time_trim_range_string(),
                "Absolute Time Range": g_pool.seek_control.get_abs_time_trim_range_string(),
            }
            with open(os.path.join(export_dir, "export_info.csv"), "w") as csv:
                write_key_value_file(csv, export_info)

            notification = {
                "subject": "should_export",
                "range": export_range,
                "ts_window": export_ts_window,
                "export_dir": export_dir,
            }
            g_pool.ipc_pub.notify(notification)
コード例 #3
0
    def export_annotations(self, export_range, export_dir):

        if not self.annotations:
            logger.warning(
                'No annotations in this recording nothing to export')
            return

        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        annotation_section = self.annotations.init_dict_for_window(
            export_window)
        annotation_idc = pm.find_closest(self.g_pool.timestamps,
                                         annotation_section['data_ts'])
        csv_keys = self.parse_csv_keys(annotation_section['data'])

        with open(os.path.join(export_dir, 'annotations.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(csv_keys)
            for annotation, idx in zip(annotation_section['data'],
                                       annotation_idc):
                csv_row = [idx]
                csv_row.extend((annotation.get(k, '') for k in csv_keys[1:]))
                csv_writer.writerow(csv_row)
            logger.info("Created 'annotations.csv' file.")
コード例 #4
0
def create_bg_task(gaze_mapper, calibration, reference_location_storage):
    assert g_pool, "You forgot to set g_pool by the plugin"
    refs_in_validation_range = reference_location_storage.get_in_range(
        gaze_mapper.validation_index_range)

    validation_window = pm.exact_window(g_pool.timestamps,
                                        gaze_mapper.validation_index_range)
    pupils_in_validation_range = g_pool.pupil_positions.by_ts_window(
        validation_window)

    # Make a copy of params to ensure there are no mappingproxy instances
    # calibration_params = fm._recursive_deep_copy(calibration.params)
    calibration_params = calibration.params

    fake_gpool = FakeGPool.from_g_pool(g_pool)

    args = (
        fake_gpool,
        calibration.gazer_class_name,
        calibration_params,
        gaze_mapper,
        pupils_in_validation_range,
        refs_in_validation_range,
    )

    return tasklib.background.create(
        f"validate gaze mapper '{gaze_mapper.name}'",
        validate,
        args=args,
    )
コード例 #5
0
def create_task(gaze_mapper, calibration):
    assert g_pool, "You forgot to set g_pool by the plugin"
    mapping_window = pm.exact_window(g_pool.timestamps,
                                     gaze_mapper.mapping_index_range)
    pupil_pos_in_mapping_range = g_pool.pupil_positions.by_ts_window(
        mapping_window)

    fake_gpool = _setup_fake_gpool(
        g_pool.capture.frame_size,
        g_pool.capture.intrinsics,
        calibration.mapping_method,
        g_pool.rec_dir,
    )

    args = (
        calibration.result,
        fake_gpool,
        pupil_pos_in_mapping_range,
        gaze_mapper.manual_correction_x,
        gaze_mapper.manual_correction_y,
    )
    name = "Create gaze mapper {}".format(gaze_mapper.name)
    return tasklib.background.create(
        name,
        _map_gaze,
        args=args,
        patches=[bg_patches.IPCLoggingPatch()],
        pass_shared_memory=True,
    )
コード例 #6
0
def create_task(calibration, all_reference_locations):
    assert g_pool, "You forgot to set g_pool by the plugin"
    calibration_window = pm.exact_window(
        g_pool.timestamps, calibration.frame_index_range
    )
    pupil_pos_in_calib_range = g_pool.pupil_positions.by_ts_window(calibration_window)

    frame_start = calibration.frame_index_range[0]
    frame_end = calibration.frame_index_range[1]
    ref_dicts_in_calib_range = [
        _create_ref_dict(ref)
        for ref in all_reference_locations
        if frame_start <= ref.frame_index <= frame_end
    ]

    fake_gpool = _setup_fake_gpool(
        g_pool.capture.frame_size,
        g_pool.capture.intrinsics,
        calibration.mapping_method,
        g_pool.rec_dir,
        calibration.minimum_confidence,
    )

    args = (fake_gpool, ref_dicts_in_calib_range, pupil_pos_in_calib_range)
    name = "Create calibration {}".format(calibration.name)
    return tasklib.background.create(
        name, _create_calibration, args=args, patches=[bg_patches.IPCLoggingPatch()]
    )
コード例 #7
0
def create_task(calibration, all_reference_locations):
    assert g_pool, "You forgot to set g_pool by the plugin"
    calibration_window = pm.exact_window(g_pool.timestamps,
                                         calibration.frame_index_range)
    pupil_pos_in_calib_range = g_pool.pupil_positions.by_ts_window(
        calibration_window)

    frame_start = calibration.frame_index_range[0]
    frame_end = calibration.frame_index_range[1]
    ref_dicts_in_calib_range = [
        _create_ref_dict(ref) for ref in all_reference_locations
        if frame_start <= ref.frame_index <= frame_end
    ]

    fake_gpool = _setup_fake_gpool(
        g_pool.capture.frame_size,
        g_pool.capture.intrinsics,
        calibration.mapping_method,
        g_pool.rec_dir,
        calibration.minimum_confidence,
    )

    args = (fake_gpool, ref_dicts_in_calib_range, pupil_pos_in_calib_range)
    name = "Create calibration {}".format(calibration.name)
    return tasklib.background.create(
        name,
        _create_calibration,
        args=args,
    )
コード例 #8
0
ファイル: player.py プロジェクト: kinjmshah/pupil
        def do_export(_):
            left_idx = g_pool.seek_control.trim_left
            right_idx = g_pool.seek_control.trim_right
            export_range = left_idx, right_idx + 1  # exclusive range.stop
            export_ts_window = pm.exact_window(g_pool.timestamps, (left_idx, right_idx))

            export_dir = os.path.join(g_pool.rec_dir, "exports")
            export_dir = next_export_sub_dir(export_dir)

            os.makedirs(export_dir)
            logger.info('Created export dir at "{}"'.format(export_dir))

            export_info = {
                "Player Software Version": str(g_pool.version),
                "Data Format Version": meta_info.min_player_version,
                "Export Date": strftime("%d.%m.%Y", localtime()),
                "Export Time": strftime("%H:%M:%S", localtime()),
                "Frame Index Range:": g_pool.seek_control.get_frame_index_trim_range_string(),
                "Relative Time Range": g_pool.seek_control.get_rel_time_trim_range_string(),
                "Absolute Time Range": g_pool.seek_control.get_abs_time_trim_range_string(),
            }
            with open(os.path.join(export_dir, "export_info.csv"), "w") as csv:
                write_key_value_file(csv, export_info)

            notification = {
                "subject": "should_export",
                "range": export_range,
                "ts_window": export_ts_window,
                "export_dir": export_dir,
            }
            g_pool.ipc_pub.notify(notification)
コード例 #9
0
    def export_fixations(self, export_range, export_dir):
        """
        between in and out mark

            fixation report:
                - fixation detection method and parameters
                - fixation count

            fixation list:
                id | start_timestamp | duration | start_frame_index | end_frame_index |
                norm_pos_x | norm_pos_y | dispersion | confidence | method |
                gaze_point_3d_x | gaze_point_3d_y | gaze_point_3d_z | base_data
        """
        if not self.fixation_data:
            logger.warning('No fixations in this recording nothing to export')
            return

        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        fixations_in_section = self.g_pool.fixations.by_ts_window(export_window)

        with open(os.path.join(export_dir,'fixations.csv'),'w',encoding='utf-8',newline='') as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(self.csv_representation_keys())
            for f in fixations_in_section:
                csv_writer.writerow(self.csv_representation_for_fixation(f))
            logger.info("Created 'fixations.csv' file.")

        with open(os.path.join(export_dir,'fixation_report.csv'),'w',encoding='utf-8',newline='') as csvfile:
            csv_writer = csv.writer(csvfile)
            csv_writer.writerow(('fixation classifier','Dispersion_Duration'))
            csv_writer.writerow(('max_dispersion','{:0.3f} deg'.format(self.max_dispersion)) )
            csv_writer.writerow(('min_duration','{:0.3f} sec'.format(self.min_duration)) )
            csv_writer.writerow((''))
            csv_writer.writerow(('fixation_count',len(fixations_in_section)))
            logger.info("Created 'fixation_report.csv' file.")
コード例 #10
0
ファイル: map_gaze.py プロジェクト: pupil-labs/pupil
def create_task(gaze_mapper, calibration):
    assert g_pool, "You forgot to set g_pool by the plugin"
    mapping_window = pm.exact_window(g_pool.timestamps, gaze_mapper.mapping_index_range)
    pupil_pos_in_mapping_range = g_pool.pupil_positions.by_ts_window(mapping_window)

    fake_gpool = _setup_fake_gpool(
        g_pool.capture.frame_size,
        g_pool.capture.intrinsics,
        calibration.mapping_method,
        g_pool.rec_dir,
    )

    args = (
        calibration.result,
        fake_gpool,
        pupil_pos_in_mapping_range,
        gaze_mapper.manual_correction_x,
        gaze_mapper.manual_correction_y,
    )
    name = "Create gaze mapper {}".format(gaze_mapper.name)
    return tasklib.background.create(
        name,
        _map_gaze,
        args=args,
        patches=[bg_patches.IPCLoggingPatch()],
        pass_shared_memory=True,
    )
コード例 #11
0
def create_task(calibration, all_reference_locations):
    assert g_pool, "You forgot to set g_pool by the plugin"
    calibration_window = pm.exact_window(g_pool.timestamps,
                                         calibration.frame_index_range)
    pupil_pos_in_calib_range = g_pool.pupil_positions.by_ts_window(
        calibration_window)

    frame_start = calibration.frame_index_range[0]
    frame_end = calibration.frame_index_range[1]
    ref_dicts_in_calib_range = [
        _create_ref_dict(ref) for ref in all_reference_locations
        if frame_start <= ref.frame_index <= frame_end
    ]

    fake_gpool = FakeGPool.from_g_pool(g_pool)
    fake_gpool.min_calibration_confidence = calibration.minimum_confidence

    args = (
        fake_gpool,
        calibration.gazer_class_name,
        ref_dicts_in_calib_range,
        pupil_pos_in_calib_range,
    )
    name = f"Create calibration {calibration.name}"
    return tasklib.background.create(name, _create_calibration, args=args)
コード例 #12
0
ファイル: map_gaze.py プロジェクト: vikrantmygamma/pupil
def create_task(gaze_mapper, calibration):
    assert g_pool, "You forgot to set g_pool by the plugin"
    mapping_window = pm.exact_window(g_pool.timestamps,
                                     gaze_mapper.mapping_index_range)
    pupil_pos_in_mapping_range = g_pool.pupil_positions.by_ts_window(
        mapping_window)
    if not pupil_pos_in_mapping_range:
        raise NotEnoughPupilData

    fake_gpool = FakeGPool.from_g_pool(g_pool)

    # Make a copy of params to ensure there are no mappingproxy instances
    # calibration_params = fm._recursive_deep_copy(calibration.params)
    calibration_params = calibration.params

    args = (
        calibration.gazer_class_name,
        calibration_params,
        fake_gpool,
        pupil_pos_in_mapping_range,
        gaze_mapper.manual_correction_x,
        gaze_mapper.manual_correction_y,
    )
    name = f"Create gaze mapper {gaze_mapper.name}"
    return tasklib.background.create(
        name,
        _map_gaze,
        args=args,
        pass_shared_memory=True,
    )
コード例 #13
0
    def _export_surface_gaze_distribution(self):
        with open(
            os.path.join(self.metrics_dir, "surface_gaze_distribution.csv"),
            "w",
            encoding="utf-8",
            newline="",
        ) as csv_file:
            csv_writer = csv.writer(csv_file, delimiter=",")

            export_window = player_methods.exact_window(
                self.world_timestamps, self.export_range
            )
            gaze_in_section = self.gaze_positions.by_ts_window(export_window)
            not_on_any_surf_ts = set([gp["timestamp"] for gp in gaze_in_section])

            csv_writer.writerow(("total_gaze_point_count", len(gaze_in_section)))
            csv_writer.writerow("")
            csv_writer.writerow(("surface_name", "gaze_count"))

            for surf_idx, surface in enumerate(self.surfaces):
                gaze_on_surf = self.gaze_on_surfaces[surf_idx]
                gaze_on_surf = list(itertools.chain.from_iterable(gaze_on_surf))
                gaze_on_surf_ts = set(
                    [gp["base_data"][1] for gp in gaze_on_surf if gp["on_surf"]]
                )
                not_on_any_surf_ts -= gaze_on_surf_ts
                csv_writer.writerow((surface.name, len(gaze_on_surf_ts)))

            csv_writer.writerow(("not_on_any_surface", len(not_on_any_surf_ts)))
            logger.info("Created 'surface_gaze_distribution.csv' file")
コード例 #14
0
def _csv_exported_gaze_data(
    gaze_positions, destination_folder, export_range, timestamps, capture
):

    export_start, export_stop = export_range  # export_stop is exclusive
    export_window = pm.exact_window(timestamps, (export_start, export_stop - 1))
    gaze_section = gaze_positions.init_dict_for_window(export_window)

    # find closest world idx for each gaze datum
    gaze_world_idc = pm.find_closest(timestamps, gaze_section["data_ts"])

    csv_header = (
        "GazeTimeStamp",
        "MediaTimeStamp",
        "MediaFrameIndex",
        "Gaze3dX",
        "Gaze3dY",
        "Gaze3dZ",
        "Gaze2dX",
        "Gaze2dY",
        "PupilDiaLeft",
        "PupilDiaRight",
        "Confidence",
    )

    csv_rows = []

    for gaze_pos, media_idx in zip(gaze_section["data"], gaze_world_idc):
        media_timestamp = timestamps[media_idx]
        try:
            pupil_dia = {}
            for p in gaze_pos["base_data"]:
                pupil_dia[p["id"]] = p["diameter_3d"]

            pixel_pos = denormalize(
                gaze_pos["norm_pos"], capture.frame_size, flip_y=True
            )
            undistorted3d = capture.intrinsics.unprojectPoints(pixel_pos)
            undistorted2d = capture.intrinsics.projectPoints(
                undistorted3d, use_distortion=False
            )

            data = (
                gaze_pos["timestamp"],
                media_timestamp,
                media_idx - export_range[0],
                *gaze_pos["gaze_point_3d"],  # Gaze3dX/Y/Z
                *undistorted2d.flat,  # Gaze2dX/Y
                pupil_dia.get(1, 0.0),  # PupilDiaLeft
                pupil_dia.get(0, 0.0),  # PupilDiaRight
                gaze_pos["confidence"],  # Confidence
            )
        except KeyError:
            raise _iMotionsExporterNo3DGazeDataError()

        csv_rows.append(data)

    return csv_header, csv_rows
コード例 #15
0
def _convert_video_file(
    input_file,
    output_file,
    export_range,
    world_timestamps,
    process_frame,
    timestamp_export_format,
):
    yield "Export video", 0.0
    input_source = File_Source(SimpleNamespace(), input_file, fill_gaps=True)
    if not input_source.initialised:
        yield "Exporting video failed", 0.0
        return

    # yield progress results two times per second
    update_rate = int(input_source.frame_rate / 2)

    export_start, export_stop = export_range  # export_stop is exclusive
    export_window = pm.exact_window(world_timestamps, (export_start, export_stop - 1))
    (export_from_index, export_to_index) = pm.find_closest(
        input_source.timestamps, export_window
    )

    #  NOTE: Start time of the export recording will be synced with world recording
    #  export! This means that if the recording to export started later than the world
    #  video, the first frame of the exported recording will not be at timestamp 0 in
    #  the recording, but later. Some video players (e.g. VLC on windows) might display
    #  the video weirdly in this case, but we rather want syncronization between the
    #  exported video!
    start_time = export_window[0]
    writer = MPEG_Writer(output_file, start_time)

    input_source.seek_to_frame(export_from_index)
    next_update_idx = export_from_index + update_rate
    while True:
        try:
            input_frame = input_source.get_frame()
        except EndofVideoError:
            break
        if input_frame.index >= export_to_index:
            break

        output_img = process_frame(input_source, input_frame)
        output_frame = input_frame
        output_frame._img = output_img  # it's ._img because .img has no setter
        writer.write_video_frame(output_frame)

        if input_source.get_frame_index() >= next_update_idx:
            progress = (input_source.get_frame_index() - export_from_index) / (
                export_to_index - export_from_index
            )
            yield "Exporting video", progress * 100.0
            next_update_idx += update_rate

    writer.close(timestamp_export_format)
    input_source.cleanup()
    yield "Exporting video completed", 100.0
コード例 #16
0
def _convert_video_file(
    input_file,
    output_file,
    export_range,
    world_timestamps,
    process_frame,
    timestamp_export_format,
):
    yield "Export video", 0.0
    input_source = File_Source(EmptyGPool(), input_file, fill_gaps=True)
    if not input_source.initialised:
        yield "Exporting video failed", 0.0
        return

    # yield progress results two times per second
    update_rate = int(input_source.frame_rate / 2)

    export_start, export_stop = export_range  # export_stop is exclusive
    export_window = pm.exact_window(world_timestamps,
                                    (export_start, export_stop - 1))
    (export_from_index,
     export_to_index) = pm.find_closest(input_source.timestamps, export_window)
    writer = AV_Writer(output_file,
                       fps=input_source.frame_rate,
                       audio_dir=None,
                       use_timestamps=True)
    input_source.seek_to_frame(export_from_index)
    next_update_idx = export_from_index + update_rate
    while True:
        try:
            input_frame = input_source.get_frame()
        except EndofVideoError:
            break
        if input_frame.index >= export_to_index:
            break

        output_img = process_frame(input_source, input_frame)
        output_frame = input_frame
        output_frame._img = output_img  # it's ._img because .img has no setter
        writer.write_video_frame(output_frame)

        if input_source.get_frame_index() >= next_update_idx:
            progress = (input_source.get_frame_index() - export_from_index) / (
                export_to_index - export_from_index)
            yield "Exporting video", progress * 100.0
            next_update_idx += update_rate

    writer.close(timestamp_export_format)
    input_source.cleanup()
    yield "Exporting video completed", 100.0
コード例 #17
0
def _convert_video_file(
    input_file,
    output_file,
    export_range,
    world_timestamps,
    process_frame,
    timestamp_export_format,
):
    yield "Export video", 0.0
    input_source = File_Source(SimpleNamespace(), input_file, fill_gaps=True)
    if not input_source.initialised:
        yield "Exporting video failed", 0.0
        return

    # yield progress results two times per second
    update_rate = int(input_source.frame_rate / 2)

    export_start, export_stop = export_range  # export_stop is exclusive
    export_window = pm.exact_window(world_timestamps, (export_start, export_stop - 1))
    (export_from_index, export_to_index) = pm.find_closest(
        input_source.timestamps, export_window
    )
    writer = AV_Writer(
        output_file, fps=input_source.frame_rate, audio_dir=None, use_timestamps=True
    )
    input_source.seek_to_frame(export_from_index)
    next_update_idx = export_from_index + update_rate
    while True:
        try:
            input_frame = input_source.get_frame()
        except EndofVideoError:
            break
        if input_frame.index >= export_to_index:
            break

        output_img = process_frame(input_source, input_frame)
        output_frame = input_frame
        output_frame._img = output_img  # it's ._img because .img has no setter
        writer.write_video_frame(output_frame)

        if input_source.get_frame_index() >= next_update_idx:
            progress = (input_source.get_frame_index() - export_from_index) / (
                export_to_index - export_from_index
            )
            yield "Exporting video", progress * 100.0
            next_update_idx += update_rate

    writer.close(timestamp_export_format)
    input_source.cleanup()
    yield "Exporting video completed", 100.0
コード例 #18
0
    def _precomputed_eye_data_for_range(self, export_range):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        pre_computed = {
            "gaze": self.g_pool.gaze_positions,
            "pupil": self.g_pool.pupil_positions,
            "fixations": self.g_pool.fixations,
        }

        for key, bisector in pre_computed.items():
            init_dict = bisector.init_dict_for_window(export_window)
            init_dict["data"] = [datum.serialized for datum in init_dict["data"]]
            pre_computed[key] = init_dict

        return pre_computed
コード例 #19
0
    def _precomputed_eye_data_for_range(self, export_range):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        pre_computed = {
            "gaze": self.g_pool.gaze_positions,
            "pupil": self.g_pool.pupil_positions,
            "pupil_by_id_0": self.g_pool.pupil_positions_by_id[0],
            "pupil_by_id_1": self.g_pool.pupil_positions_by_id[1],
            "fixations": self.g_pool.fixations,
        }

        for key, bisector in pre_computed.items():
            init_dict = bisector.init_dict_for_window(export_window)
            init_dict["data"] = [datum.serialized for datum in init_dict["data"]]
            pre_computed[key] = init_dict

        return pre_computed
コード例 #20
0
    def precomputed_for_range(self, export_range):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        pre_computed = {
            'gaze': self.g_pool.gaze_positions,
            'pupil': self.g_pool.pupil_positions,
            'fixations': self.g_pool.fixations
        }

        for key, bisector in pre_computed.items():
            init_dict = bisector.init_dict_for_window(export_window)
            init_dict['data'] = [
                datum.serialized for datum in init_dict['data']
            ]
            pre_computed[key] = init_dict

        return pre_computed
コード例 #21
0
    def export_annotations(self, export_range, export_dir):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        annotation_section = self.annotations.init_dict_for_window(
            export_window)
        annotation_idc = pm.find_closest(self.g_pool.timestamps,
                                         annotation_section["data_ts"])
        csv_keys = self.parse_csv_keys(annotation_section["data"])

        with open(
                os.path.join(export_dir, "annotations.csv"),
                "w",
                encoding="utf-8",
                newline="",
        ) as csv_file:
            csv_writer = csv.writer(csv_file)
            csv_writer.writerow(csv_keys)
            for annotation, idx in zip(annotation_section["data"],
                                       annotation_idc):
                csv_row = [idx]
                csv_row.extend((annotation.get(k, "") for k in csv_keys[1:]))
                csv_writer.writerow(csv_row)
            logger.info("Created 'annotations.csv' file.")
コード例 #22
0
 def segments_in_range(self, range) -> t.Iterable[Classified_Segment]:
     range_window = pm.exact_window(self._timestamps, range)
     return self.segments_in_timestamp_window(range_window)
コード例 #23
0
ファイル: gaze_producers.py プロジェクト: tushardobhal/pupil
    def calibrate_section(self, sec):
        if "bg_task" in sec:
            sec["bg_task"].cancel()

        sec["status"] = "Starting calibration"  # This will be overwritten on success

        try:
            sec["gaze"].clear()
            sec["gaze_ts"].clear()
        except KeyError:
            sec["gaze"] = collections.deque()
            sec["gaze_ts"] = collections.deque()

        calibration_window = pm.exact_window(self.g_pool.timestamps,
                                             sec["calibration_range"])
        mapping_window = pm.exact_window(self.g_pool.timestamps,
                                         sec["mapping_range"])

        calibration_pupil_pos = self.g_pool.pupil_positions.by_ts_window(
            calibration_window)
        mapping_pupil_pos = self.g_pool.pupil_positions.by_ts_window(
            mapping_window)
        if sec["calibration_method"] == "circle_marker":
            ref_list = self.circle_marker_positions
        elif sec["calibration_method"] == "natural_features":
            ref_list = self.manual_ref_positions

        start = sec["calibration_range"][0]
        end = sec["calibration_range"][1]
        ref_list = [r for r in ref_list if start <= r["index"] <= end]

        if not len(calibration_pupil_pos):
            logger.error('No pupil data to calibrate section "{}"'.format(
                self.sections.index(sec) + 1))
            sec["status"] = "Calibration failed. Not enough pupil positions."
            return

        if not ref_list:
            logger.error(
                'No referece marker data to calibrate section "{}"'.format(
                    self.sections.index(sec) + 1))
            sec["status"] = "Calibration failed. Not enough reference positions."
            return

        if (sec["mapping_method"] == "3d"
                and "2d" in calibration_pupil_pos[len(calibration_pupil_pos) //
                                                  2]["method"]):
            # select median pupil datum from calibration list and use its detection method as mapping method
            logger.warning(
                "Pupil data is 2d, calibration and mapping mode forced to 2d.")
            sec["mapping_method"] = "2d"

        fake = setup_fake_pool(
            self.g_pool.capture.frame_size,
            self.g_pool.capture.intrinsics,
            sec["mapping_method"],
            self.g_pool.rec_dir,
            self.g_pool.min_calibration_confidence,
        )

        calibration_pupil_pos = [pp.serialized for pp in calibration_pupil_pos]
        mapping_pupil_pos = [pp.serialized for pp in mapping_pupil_pos]

        generator_args = (
            fake,
            ref_list,
            calibration_pupil_pos,
            mapping_pupil_pos,
            sec["x_offset"],
            sec["y_offset"],
        )

        logger.info("Calibrating section {} ({}) in {} mode...".format(
            self.sections.index(sec) + 1, sec["label"], sec["mapping_method"]))
        sec["bg_task"] = bh.IPC_Logging_Task_Proxy(
            "Calibration Section {}".format(self.sections.index(sec) + 1),
            calibrate_and_map,
            args=generator_args,
        )
コード例 #24
0
def _write_gaze_data(gaze_positions, destination_folder, export_range,
                     timestamps, capture):
    global user_warned_3d_only
    with open(os.path.join(destination_folder, "gaze.tlv"),
              "w",
              encoding="utf-8",
              newline="") as csv_file:
        csv_writer = csv.writer(csv_file, delimiter="\t")

        csv_writer.writerow((
            "GazeTimeStamp",
            "MediaTimeStamp",
            "MediaFrameIndex",
            "Gaze3dX",
            "Gaze3dY",
            "Gaze3dZ",
            "Gaze2dX",
            "Gaze2dY",
            "PupilDiaLeft",
            "PupilDiaRight",
            "Confidence",
        ))

        export_start, export_stop = export_range  # export_stop is exclusive
        export_window = pm.exact_window(timestamps,
                                        (export_start, export_stop - 1))
        gaze_section = gaze_positions.init_dict_for_window(export_window)

        # find closest world idx for each gaze datum
        gaze_world_idc = pm.find_closest(timestamps, gaze_section["data_ts"])

        for gaze_pos, media_idx in zip(gaze_section["data"], gaze_world_idc):
            media_timestamp = timestamps[media_idx]
            try:
                pupil_dia = {}
                for p in gaze_pos["base_data"]:
                    pupil_dia[p["id"]] = p["diameter_3d"]

                pixel_pos = denormalize(gaze_pos["norm_pos"],
                                        capture.frame_size,
                                        flip_y=True)
                undistorted3d = capture.intrinsics.unprojectPoints(pixel_pos)
                undistorted2d = capture.intrinsics.projectPoints(
                    undistorted3d, use_distortion=False)

                data = (
                    gaze_pos["timestamp"],
                    media_timestamp,
                    media_idx - export_range[0],
                    *gaze_pos["gaze_point_3d"],  # Gaze3dX/Y/Z
                    *undistorted2d.flat,  # Gaze2dX/Y
                    pupil_dia.get(1, 0.0),  # PupilDiaLeft
                    pupil_dia.get(0, 0.0),  # PupilDiaRight
                    gaze_pos["confidence"],  # Confidence
                )
            except KeyError:
                if not user_warned_3d_only:
                    logger.error(
                        "Currently, the iMotions export only supports 3d gaze data"
                    )
                    user_warned_3d_only = True
                continue
            csv_writer.writerow(data)
コード例 #25
0
    def save_surface_statsics_to_file(self, export_range, export_dir):
        """
        between in and out mark

            report: gaze distribution:
                    - total gazepoints
                    - gaze points on surface x
                    - gaze points not on any surface

            report: surface visisbility

                - total frames
                - surface x visible framecount

            surface events:
                frame_no, ts, surface "name", "id" enter/exit

            for each surface:
                fixations_on_name.csv
                gaze_on_name_id.csv
                positions_of_name_id.csv

        """
        metrics_dir = os.path.join(export_dir, "surfaces")
        section = slice(*export_range)
        in_mark = section.start
        out_mark = section.stop
        logger.info("exporting metrics to {}".format(metrics_dir))
        if os.path.isdir(metrics_dir):
            logger.info("Will overwrite previous export for this section")
        else:
            try:
                os.mkdir(metrics_dir)
            except:
                logger.warning(
                    "Could not make metrics dir {}".format(metrics_dir))
                return

        with open(
                os.path.join(metrics_dir, "surface_visibility.csv"),
                "w",
                encoding="utf-8",
                newline="",
        ) as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=",")

            # surface visibility report
            frame_count = len(self.g_pool.timestamps[section])

            csv_writer.writerow(("frame_count", frame_count))
            csv_writer.writerow((""))
            csv_writer.writerow(("surface_name", "visible_frame_count"))
            for s in self.surfaces:
                if s.cache == None:
                    logger.warning(
                        "The surface is not cached. Please wait for the cacher to collect data."
                    )
                    return
                visible_count = s.visible_count_in_section(section)
                csv_writer.writerow((s.name, visible_count))
            logger.info("Created 'surface_visibility.csv' file")

        with open(
                os.path.join(metrics_dir, "surface_gaze_distribution.csv"),
                "w",
                encoding="utf-8",
                newline="",
        ) as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=",")

            # gaze distribution report
            export_window = pm.exact_window(self.g_pool.timestamps,
                                            export_range)
            gaze_in_section = self.g_pool.gaze_positions.by_ts_window(
                export_window)
            not_on_any_srf = set([gp["timestamp"] for gp in gaze_in_section])

            csv_writer.writerow(
                ("total_gaze_point_count", len(gaze_in_section)))
            csv_writer.writerow((""))
            csv_writer.writerow(("surface_name", "gaze_count"))

            for s in self.surfaces:
                gaze_on_srf = s.gaze_on_srf_in_section(section)
                gaze_on_srf = set(
                    [gp["base_data"]["timestamp"] for gp in gaze_on_srf])
                not_on_any_srf -= gaze_on_srf
                csv_writer.writerow((s.name, len(gaze_on_srf)))

            csv_writer.writerow(("not_on_any_surface", len(not_on_any_srf)))
            logger.info("Created 'surface_gaze_distribution.csv' file")

        with open(
                os.path.join(metrics_dir, "surface_events.csv"),
                "w",
                encoding="utf-8",
                newline="",
        ) as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=",")

            # surface events report
            csv_writer.writerow((
                "frame_number",
                "timestamp",
                "surface_name",
                "surface_uid",
                "event_type",
            ))

            events = []
            for s in self.surfaces:
                for enter_frame_id, exit_frame_id in s.cache.positive_ranges:
                    events.append({
                        "frame_id": enter_frame_id,
                        "srf_name": s.name,
                        "srf_uid": s.uid,
                        "event": "enter",
                    })
                    events.append({
                        "frame_id": exit_frame_id,
                        "srf_name": s.name,
                        "srf_uid": s.uid,
                        "event": "exit",
                    })

            events.sort(key=lambda x: x["frame_id"])
            for e in events:
                csv_writer.writerow((
                    e["frame_id"],
                    self.g_pool.timestamps[e["frame_id"]],
                    e["srf_name"],
                    e["srf_uid"],
                    e["event"],
                ))
            logger.info("Created 'surface_events.csv' file")

        for s in self.surfaces:
            # per surface names:
            surface_name = "_" + s.name.replace("/", "") + "_" + s.uid

            # save surface_positions as csv
            with open(
                    os.path.join(metrics_dir,
                                 "srf_positons" + surface_name + ".csv"),
                    "w",
                    encoding="utf-8",
                    newline="",
            ) as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=",")
                csv_writer.writerow((
                    "frame_idx",
                    "timestamp",
                    "m_to_screen",
                    "m_from_screen",
                    "detected_markers",
                ))
                for idx, ts, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)),
                        self.g_pool.timestamps, s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            csv_writer.writerow((
                                idx,
                                ts,
                                ref_srf_data["m_to_screen"],
                                ref_srf_data["m_from_screen"],
                                ref_srf_data["detected_markers"],
                            ))

            # save gaze on srf as csv.
            with open(
                    os.path.join(
                        metrics_dir,
                        "gaze_positions_on_surface" + surface_name + ".csv"),
                    "w",
                    encoding="utf-8",
                    newline="",
            ) as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=",")
                csv_writer.writerow((
                    "world_timestamp",
                    "world_frame_idx",
                    "gaze_timestamp",
                    "x_norm",
                    "y_norm",
                    "x_scaled",
                    "y_scaled",
                    "on_srf",
                    "confidence",
                ))
                for idx, ts, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)),
                        self.g_pool.timestamps, s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            for gp in s.gaze_on_srf_by_frame_idx(
                                    idx, ref_srf_data["m_from_screen"]):
                                csv_writer.writerow((
                                    ts,
                                    idx,
                                    gp["base_data"]["timestamp"],
                                    gp["norm_pos"][0],
                                    gp["norm_pos"][1],
                                    gp["norm_pos"][0] * s.real_world_size["x"],
                                    gp["norm_pos"][1] * s.real_world_size["y"],
                                    gp["on_srf"],
                                    gp["confidence"],
                                ))

            # save fixation on srf as csv.
            with open(
                    os.path.join(
                        metrics_dir,
                        "fixations_on_surface" + surface_name + ".csv"),
                    "w",
                    encoding="utf-8",
                    newline="",
            ) as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=",")
                csv_writer.writerow((
                    "id",
                    "start_timestamp",
                    "duration",
                    "start_frame",
                    "end_frame",
                    "norm_pos_x",
                    "norm_pos_y",
                    "x_scaled",
                    "y_scaled",
                    "on_srf",
                ))
                fixations_on_surface = []
                for idx, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)), s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            for f in s.fixations_on_srf_by_frame_idx(
                                    idx, ref_srf_data["m_from_screen"]):
                                fixations_on_surface.append(f)

                removed_duplicates = dict([
                    (f["base_data"]["id"], f) for f in fixations_on_surface
                ]).values()
                for f_on_s in removed_duplicates:
                    f = f_on_s["base_data"]
                    f_x, f_y = f_on_s["norm_pos"]
                    f_on_srf = f_on_s["on_srf"]
                    csv_writer.writerow((
                        f["id"],
                        f["timestamp"],
                        f["duration"],
                        f["start_frame_index"],
                        f["end_frame_index"],
                        f_x,
                        f_y,
                        f_x * s.real_world_size["x"],
                        f_y * s.real_world_size["y"],
                        f_on_srf,
                    ))

            logger.info(
                "Saved surface positon gaze and fixation data for '{}' with uid:'{}'"
                .format(s.name, s.uid))

            if s.heatmap is not None:
                logger.info("Saved Heatmap as .png file.")
                cv2.imwrite(
                    os.path.join(metrics_dir,
                                 "heatmap" + surface_name + ".png"),
                    s.heatmap,
                )

        logger.info("Done exporting reference surface data.")
コード例 #26
0
    def export_data(self, export_range, export_dir):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        with open(os.path.join(export_dir, 'pupil_positions.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=',')

            csv_writer.writerow(
                ('timestamp', 'index', 'id', 'confidence', 'norm_pos_x',
                 'norm_pos_y', 'diameter', 'method', 'ellipse_center_x',
                 'ellipse_center_y', 'ellipse_axis_a', 'ellipse_axis_b',
                 'ellipse_angle', 'diameter_3d', 'model_confidence',
                 'model_id', 'sphere_center_x', 'sphere_center_y',
                 'sphere_center_z', 'sphere_radius', 'circle_3d_center_x',
                 'circle_3d_center_y', 'circle_3d_center_z',
                 'circle_3d_normal_x', 'circle_3d_normal_y',
                 'circle_3d_normal_z', 'circle_3d_radius', 'theta', 'phi',
                 'projected_sphere_center_x', 'projected_sphere_center_y',
                 'projected_sphere_axis_a', 'projected_sphere_axis_b',
                 'projected_sphere_angle'))

            pupil_section = self.g_pool.pupil_positions.init_dict_for_window(
                export_window)
            pupil_world_idc = pm.find_closest(self.g_pool.timestamps,
                                              pupil_section['data_ts'])
            for p, idx in zip(pupil_section['data'], pupil_world_idc):
                data_2d = [
                    '{}'.format(p['timestamp']
                                ),  # use str to be consitant with csv lib.
                    idx,
                    p['id'],
                    p['confidence'],
                    p['norm_pos'][0],
                    p['norm_pos'][1],
                    p['diameter'],
                    p['method']
                ]
                try:
                    ellipse_data = [
                        p['ellipse']['center'][0], p['ellipse']['center'][1],
                        p['ellipse']['axes'][0], p['ellipse']['axes'][1],
                        p['ellipse']['angle']
                    ]
                except KeyError:
                    ellipse_data = [None] * 5
                try:
                    data_3d = [
                        p['diameter_3d'], p['model_confidence'], p['model_id'],
                        p['sphere']['center'][0], p['sphere']['center'][1],
                        p['sphere']['center'][2], p['sphere']['radius'],
                        p['circle_3d']['center'][0],
                        p['circle_3d']['center'][1],
                        p['circle_3d']['center'][2],
                        p['circle_3d']['normal'][0],
                        p['circle_3d']['normal'][1],
                        p['circle_3d']['normal'][2], p['circle_3d']['radius'],
                        p['theta'], p['phi'],
                        p['projected_sphere']['center'][0],
                        p['projected_sphere']['center'][1],
                        p['projected_sphere']['axes'][0],
                        p['projected_sphere']['axes'][1],
                        p['projected_sphere']['angle']
                    ]
                except KeyError:
                    data_3d = [None] * 21
                row = data_2d + ellipse_data + data_3d
                csv_writer.writerow(row)
            logger.info("Created 'pupil_positions.csv' file.")

        with open(os.path.join(export_dir, 'gaze_positions.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=',')
            csv_writer.writerow(
                ("timestamp", "index", "confidence", "norm_pos_x",
                 "norm_pos_y", "base_data", "gaze_point_3d_x",
                 "gaze_point_3d_y", "gaze_point_3d_z", "eye_center0_3d_x",
                 "eye_center0_3d_y", "eye_center0_3d_z", "gaze_normal0_x",
                 "gaze_normal0_y", "gaze_normal0_z", "eye_center1_3d_x",
                 "eye_center1_3d_y", "eye_center1_3d_z", "gaze_normal1_x",
                 "gaze_normal1_y", "gaze_normal1_z"))

            gaze_section = self.g_pool.gaze_positions.init_dict_for_window(
                export_window)
            gaze_world_idc = pm.find_closest(self.g_pool.timestamps,
                                             gaze_section['data_ts'])

            for g, idx in zip(gaze_section['data'], gaze_world_idc):
                data = [
                    '{}'.format(g["timestamp"]), idx, g["confidence"],
                    g["norm_pos"][0], g["norm_pos"][1], " ".join([
                        '{}-{}'.format(b['timestamp'], b['id'])
                        for b in g['base_data']
                    ])
                ]  # use str on timestamp to be consitant with csv lib.

                # add 3d data if avaiblable
                if g.get('gaze_point_3d', None) is not None:
                    data_3d = [
                        g['gaze_point_3d'][0], g['gaze_point_3d'][1],
                        g['gaze_point_3d'][2]
                    ]

                    # binocular
                    if g.get('eye_centers_3d', None) is not None:
                        data_3d += g['eye_centers_3d'].get(
                            0, [None, None, None])
                        data_3d += g['gaze_normals_3d'].get(
                            0, [None, None, None])
                        data_3d += g['eye_centers_3d'].get(
                            1, [None, None, None])
                        data_3d += g['gaze_normals_3d'].get(
                            1, [None, None, None])
                    # monocular
                    elif g.get('eye_center_3d', None) is not None:
                        data_3d += g['eye_center_3d']
                        data_3d += g['gaze_normal_3d']
                        data_3d += [None] * 6
                else:
                    data_3d = [None] * 15
                data += data_3d
                csv_writer.writerow(data)
            logger.info("Created 'gaze_positions.csv' file.")

        with open(os.path.join(export_dir, 'pupil_gaze_positions_info.txt'),
                  'w',
                  encoding='utf-8',
                  newline='') as info_file:
            info_file.write(self.__doc__)
コード例 #27
0
def export_processed_h264(
    world_timestamps,
    unprocessed_video_loc,
    target_video_loc,
    export_range,
    process_frame,
    export_timestamps,
):
    yield "Converting video", 0.1
    capture = File_Source(Empty(), unprocessed_video_loc)
    if not capture.initialised:
        yield "Converting scene video failed", 0.0
        return

    export_window = pm.exact_window(world_timestamps, export_range)
    (export_from_index,
     export_to_index) = pm.find_closest(capture.timestamps, export_window)

    update_rate = 10
    start_time = None
    time_base = Fraction(1, 65535)

    target_container = av.open(target_video_loc, "w")
    video_stream = target_container.add_stream("mpeg4", 1 / time_base)
    video_stream.bit_rate = 150e6
    video_stream.bit_rate_tolerance = video_stream.bit_rate / 20
    video_stream.thread_count = max(1, mp.cpu_count() - 1)
    video_stream.width, video_stream.height = capture.frame_size

    av_frame = av.VideoFrame(*capture.frame_size, "bgr24")
    av_frame.time_base = time_base

    capture.seek_to_frame(export_from_index)
    next_update_idx = export_from_index + update_rate
    timestamps = []
    while True:
        try:
            frame = capture.get_frame()
        except EndofVideoError:
            break

        if frame.index > export_to_index:
            break

        if start_time is None:
            start_time = frame.timestamp

        undistorted_img = process_frame(capture, frame)
        av_frame.planes[0].update(undistorted_img)
        av_frame.pts = int((frame.timestamp - start_time) / time_base)

        if export_timestamps:
            timestamps.append(frame.timestamp)

        packet = video_stream.encode(av_frame)
        if packet:
            target_container.mux(packet)

        if capture.current_frame_idx >= next_update_idx:
            progress = ((capture.current_frame_idx - export_from_index) /
                        (export_to_index - export_from_index)) * 0.9 + 0.1
            yield "Converting video", progress * 100.0
            next_update_idx += update_rate

    while True:  # flush encoder
        packet = video_stream.encode()
        if packet:
            target_container.mux(packet)
        else:
            break

    if export_timestamps:
        write_timestamps(target_video_loc, timestamps)

    target_container.close()
    capture.cleanup()
    yield "Converting video completed", 1.0 * 100.0
コード例 #28
0
    def save_surface_statsics_to_file(self, export_range, export_dir):
        """
        between in and out mark

            report: gaze distribution:
                    - total gazepoints
                    - gaze points on surface x
                    - gaze points not on any surface

            report: surface visisbility

                - total frames
                - surface x visible framecount

            surface events:
                frame_no, ts, surface "name", "id" enter/exit

            for each surface:
                fixations_on_name.csv
                gaze_on_name_id.csv
                positions_of_name_id.csv

        """
        metrics_dir = os.path.join(export_dir, 'surfaces')
        section = slice(*export_range)
        in_mark = section.start
        out_mark = section.stop
        logger.info("exporting metrics to {}".format(metrics_dir))
        if os.path.isdir(metrics_dir):
            logger.info("Will overwrite previous export for this section")
        else:
            try:
                os.mkdir(metrics_dir)
            except:
                logger.warning(
                    "Could not make metrics dir {}".format(metrics_dir))
                return

        with open(os.path.join(metrics_dir, 'surface_visibility.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=',')

            # surface visibility report
            frame_count = len(self.g_pool.timestamps[section])

            csv_writer.writerow(('frame_count', frame_count))
            csv_writer.writerow((''))
            csv_writer.writerow(('surface_name', 'visible_frame_count'))
            for s in self.surfaces:
                if s.cache == None:
                    logger.warning(
                        "The surface is not cached. Please wait for the cacher to collect data."
                    )
                    return
                visible_count = s.visible_count_in_section(section)
                csv_writer.writerow((s.name, visible_count))
            logger.info("Created 'surface_visibility.csv' file")

        with open(os.path.join(metrics_dir, 'surface_gaze_distribution.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=',')

            # gaze distribution report
            export_window = pm.exact_window(self.g_pool.timestamps,
                                            export_range)
            gaze_in_section = self.g_pool.gaze_positions.by_ts_window(
                export_window)
            not_on_any_srf = set([gp['timestamp'] for gp in gaze_in_section])

            csv_writer.writerow(
                ('total_gaze_point_count', len(gaze_in_section)))
            csv_writer.writerow((''))
            csv_writer.writerow(('surface_name', 'gaze_count'))

            for s in self.surfaces:
                gaze_on_srf = s.gaze_on_srf_in_section(section)
                gaze_on_srf = set(
                    [gp['base_data']['timestamp'] for gp in gaze_on_srf])
                not_on_any_srf -= gaze_on_srf
                csv_writer.writerow((s.name, len(gaze_on_srf)))

            csv_writer.writerow(('not_on_any_surface', len(not_on_any_srf)))
            logger.info("Created 'surface_gaze_distribution.csv' file")

        with open(os.path.join(metrics_dir, 'surface_events.csv'),
                  'w',
                  encoding='utf-8',
                  newline='') as csvfile:
            csv_writer = csv.writer(csvfile, delimiter=',')

            # surface events report
            csv_writer.writerow(('frame_number', 'timestamp', 'surface_name',
                                 'surface_uid', 'event_type'))

            events = []
            for s in self.surfaces:
                for enter_frame_id, exit_frame_id in s.cache.positive_ranges:
                    events.append({
                        'frame_id': enter_frame_id,
                        'srf_name': s.name,
                        'srf_uid': s.uid,
                        'event': 'enter'
                    })
                    events.append({
                        'frame_id': exit_frame_id,
                        'srf_name': s.name,
                        'srf_uid': s.uid,
                        'event': 'exit'
                    })

            events.sort(key=lambda x: x['frame_id'])
            for e in events:
                csv_writer.writerow(
                    (e['frame_id'], self.g_pool.timestamps[e['frame_id']],
                     e['srf_name'], e['srf_uid'], e['event']))
            logger.info("Created 'surface_events.csv' file")

        for s in self.surfaces:
            # per surface names:
            surface_name = '_' + s.name.replace('/', '') + '_' + s.uid

            #save surface_positions as csv
            with open(os.path.join(metrics_dir,
                                   'srf_positons' + surface_name + '.csv'),
                      'w',
                      encoding='utf-8',
                      newline='') as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=',')
                csv_writer.writerow(('frame_idx', 'timestamp', 'm_to_screen',
                                     'm_from_screen', 'detected_markers'))
                for idx, ts, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)),
                        self.g_pool.timestamps, s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            csv_writer.writerow(
                                (idx, ts, ref_srf_data['m_to_screen'],
                                 ref_srf_data['m_from_screen'],
                                 ref_srf_data['detected_markers']))

            # save gaze on srf as csv.
            with open(os.path.join(
                    metrics_dir,
                    'gaze_positions_on_surface' + surface_name + '.csv'),
                      'w',
                      encoding='utf-8',
                      newline='') as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=',')
                csv_writer.writerow(
                    ('world_timestamp', 'world_frame_idx', 'gaze_timestamp',
                     'x_norm', 'y_norm', 'x_scaled', 'y_scaled', 'on_srf',
                     'confidence'))
                for idx, ts, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)),
                        self.g_pool.timestamps, s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            for gp in s.gaze_on_srf_by_frame_idx(
                                    idx, ref_srf_data['m_from_screen']):
                                csv_writer.writerow(
                                    (ts, idx, gp['base_data']['timestamp'],
                                     gp['norm_pos'][0], gp['norm_pos'][1],
                                     gp['norm_pos'][0] *
                                     s.real_world_size['x'],
                                     gp['norm_pos'][1] *
                                     s.real_world_size['y'], gp['on_srf'],
                                     gp['confidence']))

            # save fixation on srf as csv.
            with open(os.path.join(
                    metrics_dir,
                    'fixations_on_surface' + surface_name + '.csv'),
                      'w',
                      encoding='utf-8',
                      newline='') as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=',')
                csv_writer.writerow(
                    ('id', 'start_timestamp', 'duration', 'start_frame',
                     'end_frame', 'norm_pos_x', 'norm_pos_y', 'x_scaled',
                     'y_scaled', 'on_srf'))
                fixations_on_surface = []
                for idx, ref_srf_data in zip(
                        range(len(self.g_pool.timestamps)), s.cache):
                    if in_mark <= idx < out_mark:
                        if ref_srf_data is not None and ref_srf_data is not False:
                            for f in s.fixations_on_srf_by_frame_idx(
                                    idx, ref_srf_data['m_from_screen']):
                                fixations_on_surface.append(f)

                removed_duplicates = dict([
                    (f['base_data']['id'], f) for f in fixations_on_surface
                ]).values()
                for f_on_s in removed_duplicates:
                    f = f_on_s['base_data']
                    f_x, f_y = f_on_s['norm_pos']
                    f_on_srf = f_on_s['on_srf']
                    csv_writer.writerow(
                        (f['id'], f['timestamp'], f['duration'],
                         f['start_frame_index'], f['end_frame_index'], f_x,
                         f_y, f_x * s.real_world_size['x'],
                         f_y * s.real_world_size['y'], f_on_srf))

            logger.info(
                "Saved surface positon gaze and fixation data for '{}' with uid:'{}'"
                .format(s.name, s.uid))

            if s.heatmap is not None:
                logger.info("Saved Heatmap as .png file.")
                cv2.imwrite(
                    os.path.join(metrics_dir,
                                 'heatmap' + surface_name + '.png'), s.heatmap)

        logger.info("Done exporting reference surface data.")
コード例 #29
0
ファイル: imotions_exporter.py プロジェクト: pupil-labs/pupil
def _write_gaze_data(
    gaze_positions, destination_folder, export_range, timestamps, capture
):
    global user_warned_3d_only
    with open(
        os.path.join(destination_folder, "gaze.tlv"), "w", encoding="utf-8", newline=""
    ) as csv_file:
        csv_writer = csv.writer(csv_file, delimiter="\t")

        csv_writer.writerow(
            (
                "GazeTimeStamp",
                "MediaTimeStamp",
                "MediaFrameIndex",
                "Gaze3dX",
                "Gaze3dY",
                "Gaze3dZ",
                "Gaze2dX",
                "Gaze2dY",
                "PupilDiaLeft",
                "PupilDiaRight",
                "Confidence",
            )
        )

        export_start, export_stop = export_range  # export_stop is exclusive
        export_window = pm.exact_window(timestamps, (export_start, export_stop - 1))
        gaze_section = gaze_positions.init_dict_for_window(export_window)

        # find closest world idx for each gaze datum
        gaze_world_idc = pm.find_closest(timestamps, gaze_section["data_ts"])

        for gaze_pos, media_idx in zip(gaze_section["data"], gaze_world_idc):
            media_timestamp = timestamps[media_idx]
            try:
                pupil_dia = {}
                for p in gaze_pos["base_data"]:
                    pupil_dia[p["id"]] = p["diameter_3d"]

                pixel_pos = denormalize(
                    gaze_pos["norm_pos"], capture.frame_size, flip_y=True
                )
                undistorted3d = capture.intrinsics.unprojectPoints(pixel_pos)
                undistorted2d = capture.intrinsics.projectPoints(
                    undistorted3d, use_distortion=False
                )

                data = (
                    gaze_pos["timestamp"],
                    media_timestamp,
                    media_idx - export_range[0],
                    *gaze_pos["gaze_point_3d"],  # Gaze3dX/Y/Z
                    *undistorted2d.flat,  # Gaze2dX/Y
                    pupil_dia.get(1, 0.0),  # PupilDiaLeft
                    pupil_dia.get(0, 0.0),  # PupilDiaRight
                    gaze_pos["confidence"],  # Confidence
                )
            except KeyError:
                if not user_warned_3d_only:
                    logger.error(
                        "Currently, the iMotions export only supports 3d gaze data"
                    )
                    user_warned_3d_only = True
                continue
            csv_writer.writerow(data)
コード例 #30
0
ファイル: raw_data_exporter.py プロジェクト: jdg021/pupil
    def export_data(self, export_range, export_dir):
        export_window = pm.exact_window(self.g_pool.timestamps, export_range)
        if self.should_export_pupil_positions:
            with open(
                os.path.join(export_dir, "pupil_positions.csv"),
                "w",
                encoding="utf-8",
                newline="",
            ) as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=",")

                csv_writer.writerow(
                    (
                        "timestamp",
                        "index",
                        "id",
                        "confidence",
                        "norm_pos_x",
                        "norm_pos_y",
                        "diameter",
                        "method",
                        "ellipse_center_x",
                        "ellipse_center_y",
                        "ellipse_axis_a",
                        "ellipse_axis_b",
                        "ellipse_angle",
                        "diameter_3d",
                        "model_confidence",
                        "model_id",
                        "sphere_center_x",
                        "sphere_center_y",
                        "sphere_center_z",
                        "sphere_radius",
                        "circle_3d_center_x",
                        "circle_3d_center_y",
                        "circle_3d_center_z",
                        "circle_3d_normal_x",
                        "circle_3d_normal_y",
                        "circle_3d_normal_z",
                        "circle_3d_radius",
                        "theta",
                        "phi",
                        "projected_sphere_center_x",
                        "projected_sphere_center_y",
                        "projected_sphere_axis_a",
                        "projected_sphere_axis_b",
                        "projected_sphere_angle",
                    )
                )

                pupil_section = self.g_pool.pupil_positions.init_dict_for_window(
                    export_window
                )
                pupil_world_idc = pm.find_closest(
                    self.g_pool.timestamps, pupil_section["data_ts"]
                )
                for p, idx in zip(pupil_section["data"], pupil_world_idc):
                    data_2d = [
                        "{}".format(
                            p["timestamp"]
                        ),  # use str to be consitant with csv lib.
                        idx,
                        p["id"],
                        p["confidence"],
                        p["norm_pos"][0],
                        p["norm_pos"][1],
                        p["diameter"],
                        p["method"],
                    ]
                    try:
                        ellipse_data = [
                            p["ellipse"]["center"][0],
                            p["ellipse"]["center"][1],
                            p["ellipse"]["axes"][0],
                            p["ellipse"]["axes"][1],
                            p["ellipse"]["angle"],
                        ]
                    except KeyError:
                        ellipse_data = [None] * 5
                    try:
                        data_3d = [
                            p["diameter_3d"],
                            p["model_confidence"],
                            p["model_id"],
                            p["sphere"]["center"][0],
                            p["sphere"]["center"][1],
                            p["sphere"]["center"][2],
                            p["sphere"]["radius"],
                            p["circle_3d"]["center"][0],
                            p["circle_3d"]["center"][1],
                            p["circle_3d"]["center"][2],
                            p["circle_3d"]["normal"][0],
                            p["circle_3d"]["normal"][1],
                            p["circle_3d"]["normal"][2],
                            p["circle_3d"]["radius"],
                            p["theta"],
                            p["phi"],
                            p["projected_sphere"]["center"][0],
                            p["projected_sphere"]["center"][1],
                            p["projected_sphere"]["axes"][0],
                            p["projected_sphere"]["axes"][1],
                            p["projected_sphere"]["angle"],
                        ]
                    except KeyError:
                        data_3d = [None] * 21
                    row = data_2d + ellipse_data + data_3d
                    csv_writer.writerow(row)
                logger.info("Created 'pupil_positions.csv' file.")

        if self.should_export_gaze_positions:
            with open(
                os.path.join(export_dir, "gaze_positions.csv"),
                "w",
                encoding="utf-8",
                newline="",
            ) as csvfile:
                csv_writer = csv.writer(csvfile, delimiter=",")
                csv_writer.writerow(
                    (
                        "timestamp",
                        "index",
                        "confidence",
                        "norm_pos_x",
                        "norm_pos_y",
                        "base_data",
                        "gaze_point_3d_x",
                        "gaze_point_3d_y",
                        "gaze_point_3d_z",
                        "eye_center0_3d_x",
                        "eye_center0_3d_y",
                        "eye_center0_3d_z",
                        "gaze_normal0_x",
                        "gaze_normal0_y",
                        "gaze_normal0_z",
                        "eye_center1_3d_x",
                        "eye_center1_3d_y",
                        "eye_center1_3d_z",
                        "gaze_normal1_x",
                        "gaze_normal1_y",
                        "gaze_normal1_z",
                    )
                )

                gaze_section = self.g_pool.gaze_positions.init_dict_for_window(
                    export_window
                )
                gaze_world_idc = pm.find_closest(
                    self.g_pool.timestamps, gaze_section["data_ts"]
                )

                for g, idx in zip(gaze_section["data"], gaze_world_idc):
                    data = [
                        "{}".format(g["timestamp"]),
                        idx,
                        g["confidence"],
                        g["norm_pos"][0],
                        g["norm_pos"][1],
                        " ".join(
                            [
                                "{}-{}".format(b["timestamp"], b["id"])
                                for b in g["base_data"]
                            ]
                        ),
                    ]  # use str on timestamp to be consitant with csv lib.

                    # add 3d data if avaiblable
                    if g.get("gaze_point_3d", None) is not None:
                        data_3d = [
                            g["gaze_point_3d"][0],
                            g["gaze_point_3d"][1],
                            g["gaze_point_3d"][2],
                        ]

                        # binocular
                        if g.get("eye_centers_3d", None) is not None:
                            data_3d += g["eye_centers_3d"].get(0, [None, None, None])
                            data_3d += g["gaze_normals_3d"].get(0, [None, None, None])
                            data_3d += g["eye_centers_3d"].get(1, [None, None, None])
                            data_3d += g["gaze_normals_3d"].get(1, [None, None, None])
                        # monocular
                        elif g.get("eye_center_3d", None) is not None:
                            data_3d += g["eye_center_3d"]
                            data_3d += g["gaze_normal_3d"]
                            data_3d += [None] * 6
                    else:
                        data_3d = [None] * 15
                    data += data_3d
                    csv_writer.writerow(data)
                logger.info("Created 'gaze_positions.csv' file.")
        if self.should_export_field_info:
            with open(
                os.path.join(export_dir, "pupil_gaze_positions_info.txt"),
                "w",
                encoding="utf-8",
                newline="",
            ) as info_file:
                info_file.write(self.__doc__)