コード例 #1
0
class SelectionTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 3
            },
            "selection": {
                "method": "ROULETTE_SELECTION"
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config)
        self.population = self.generator.init()

        # give population random scores
        for inidividual in self.population.individuals:
            inidividual.score = random.triangular(1, 100)

    def print_population(self, phase, population):
        print "{0}[{1}]:".format(phase, len(population.individuals))
        for individual in population.individuals:
            print individual, individual.score
        print '\n\n'

        return len(population.individuals)

    def test_normalize_scores(self):
        self.selection._normalize_scores(self.population)

        total_sum = 0
        for individual in self.population.individuals:
            total_sum += individual.score

        self.assertEquals(round(total_sum, 2), 1.0)

    def test_roulette_selection(self):
        print "ROULETTE SELECTION"

        old_pop_size = len(self.population.individuals)
        self.selection.roulette_wheel_selection(self.population)
        new_pop_size = len(self.population.individuals)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEquals(new_pop_size, old_pop_size)

    def test_tournament_selection(self):
        print "TOURNAMENT SELECTION"

        # tournament selection
        old_pop_size = self.print_population("OLD", self.population)
        self.selection.tournament_selection(self.population)
        new_pop_size = self.print_population("NEW", self.population)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEqual(old_pop_size, new_pop_size)

    def test_elitest_selection(self):
        print "ELITEST SELECTION"

        # elitest selection
        old_pop_size = self.print_population("OLD", self.population)
        self.selection.elitest_selection(self.population)
        new_pop_size = self.print_population("NEW", self.population)

        self.assertEquals(old_pop_size, new_pop_size)

    def test_greedy_over_selection(self):
        print "GREEDY-OVER SELECTION"

        # create population of size 1000
        self.config["max_population"] = 1000
        generator = TreeGenerator(self.config)
        population = generator.init()

        # greedy over selection
        old_pop_size = self.print_population("OLD", population)
        self.selection.greedy_over_selection(population)
        new_pop_size = self.print_population("NEW", population)

        self.assertEquals(old_pop_size, new_pop_size)

    def test_select(self):
        old_pop_size = len(self.population.individuals)
        self.selection.select(self.population)
        new_pop_size = len(self.population.individuals)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEquals(old_pop_size, new_pop_size)
コード例 #2
0
class JSONStoreTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population":
            10,
            "tree_generation": {
                "method": "FULL_METHOD",
                "initial_max_depth": 4
            },
            "evaluator": {
                "use_cache": True
            },
            "selection": {
                "method": "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 0.6
            },
            "mutation": {
                "methods": ["POINT_MUTATION"],
                "probability": 0.8
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }],
            "terminal_nodes": [
                {
                    "type": "CONSTANT",
                    "value": 1.0
                },
            ],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }],
            "data_file":
            "tests/data/sine.dat",
            "response_variables": [{
                "name": "y"
            }],
            "recorder": {
                "store_file": "json_store_test.json",
                "compress": True
            }
        }
        config.load_data(self.config)

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.json_store = JSONStore(self.config)
        self.json_store.setup_store()

        self.population = self.generator.init()
        results = []
        cache = {}
        evaluate(self.population.individuals, self.functions, self.config,
                 results, cache, self.json_store)
        self.population.sort_individuals()

        self.selection = Selection(self.config, recorder=self.json_store)
        self.crossover = TreeCrossover(self.config, recorder=self.json_store)
        self.mutation = TreeMutation(self.config, recorder=self.json_store)

    def tearDown(self):
        self.json_store.delete_store()

        del self.config
        del self.functions
        del self.generator
        del self.population
        del self.json_store

    def test_setup_store(self):
        # assert
        file_exists = os.path.exists(self.config["recorder"]["store_file"])
        self.assertEquals(file_exists, True)

    def test_purge_store(self):
        # write something to store file
        self.json_store.store_file.write("Hello World\n")
        self.json_store.store_file.close()

        # purge store file
        self.json_store.purge_store()

        # assert
        store_file = open(self.config["recorder"]["store_file"], "r").read()
        self.assertEquals(len(store_file), 0)

    def test_delete_store(self):
        # delete store
        self.json_store.delete_store()

        # assert
        file_exists = os.path.exists(self.config["recorder"]["store_file"])
        self.assertEquals(file_exists, False)

    def test_record_population(self):
        self.json_store.record_population(self.population)

        record = self.json_store.generation_record
        self.assertNotEquals(record, {})
        self.assertEquals(record["population"]["generation"], 0)

    def test_record_selection(self):
        # record selection
        self.selection.select(self.population)

        # assert
        record = self.json_store.generation_record
        # import pprint
        # pprint.pprint(record)
        self.assertNotEquals(record, {})
        self.assertEquals(record["selection"]["selected"], 10)

    def test_record_crossover(self):
        # record crossover
        tree_1 = self.population.individuals[0]
        tree_2 = self.population.individuals[1]
        self.crossover.crossover(tree_1, tree_2)

        # assert
        record = self.json_store.generation_record
        self.assertNotEquals(record, {})

    def test_record_mutation(self):
        # record mutation
        tree = self.population.individuals[0]
        self.mutation.mutate(tree)

        # assert
        record = self.json_store.generation_record
        # pprint.pprint(record)
        self.assertNotEquals(record, {})

    def test_record_evaulation(self):
        # record evaluation
        results = []
        evaluate(self.population.individuals,
                 self.functions,
                 self.config,
                 results,
                 recorder=self.json_store)

        # assert
        record = self.json_store.generation_record
        # import pprint
        # pprint.pprint(record)
        self.assertEquals(record["evaluation"]["cache_size"], 10)
        self.assertEquals(record["evaluation"]["match_cached"], 0)

    def test_record_to_file(self):
        # write record to file and close
        self.json_store.record_population(self.population)
        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # open up the file and restore json to dict
        store_file = open(self.config["recorder"]["store_file"], "r").read()
        data = json.loads(store_file)

        # assert tests
        self.assertNotEquals(data, {})
        self.assertEquals(data["population"]["generation"], 0)

    def test_summarize_store(self):
        # write record to file and close
        self.json_store.setup_store()
        self.json_store.record_population(self.population)

        for i in range(5):
            tree_1 = self.population.individuals[0]
            tree_2 = self.population.individuals[1]
            self.crossover.crossover(tree_1, tree_2)

        for i in range(10):
            tree = self.population.individuals[0]
            self.mutation.mutate(tree)

        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # summarize
        self.json_store.summarize_store()

        # assert
        store_file = open(self.config["recorder"]["store_file"], "r")
        line = json.loads(store_file.read())
        store_file.close()

        self.assertIsNotNone(line)

    def test_finalize(self):
        # write record to file and close
        self.json_store.setup_store()
        self.json_store.record_population(self.population)
        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # zip the store file
        self.json_store.finalize()

        # assert
        store_fp = self.config["recorder"]["store_file"]
        store_fp = list(os.path.splitext(store_fp))  # split ext
        store_fp[1] = ".zip"  # change ext to zip
        store_fp = "".join(store_fp)

        file_exists = os.path.exists(store_fp)
        self.assertEquals(file_exists, True)
コード例 #3
0
ファイル: selection_tests.py プロジェクト: defims/playground
class SelectionTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population" : 10,

            "tree_generation" : {
                "method" : "FULL_METHOD",
                "initial_max_depth" : 3
            },

            "selection" : {
                    "method" : "ROULETTE_SELECTION"
            },

            "function_nodes" : [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1},
                {"type": "FUNCTION", "name": "RAD", "arity": 1}
            ],

            "terminal_nodes" : [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 3.0},
                {"type": "CONSTANT", "value": 4.0},
                {"type": "CONSTANT", "value": 5.0},
                {"type": "CONSTANT", "value": 6.0},
                {"type": "CONSTANT", "value": 7.0},
                {"type": "CONSTANT", "value": 8.0},
                {"type": "CONSTANT", "value": 9.0},
                {"type": "CONSTANT", "value": 10.0}
            ],

            "input_variables" : [
                {"type": "INPUT", "name": "x"}
            ]
        }

        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config)
        self.population = self.generator.init()

        # give population random scores
        for inidividual in self.population.individuals:
            inidividual.score = random.triangular(1, 100)

    def print_population(self, phase, population):
        print "{0}[{1}]:".format(phase, len(population.individuals))
        for individual in population.individuals:
            print individual, individual.score
        print '\n\n'

        return len(population.individuals)

    def test_normalize_scores(self):
        self.selection._normalize_scores(self.population)

        total_sum = 0
        for individual in self.population.individuals:
            total_sum += individual.score

        self.assertEquals(round(total_sum, 2), 1.0)

    def test_roulette_selection(self):
        print "ROULETTE SELECTION"

        old_pop_size = len(self.population.individuals)
        self.selection.roulette_wheel_selection(self.population)
        new_pop_size = len(self.population.individuals)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEquals(new_pop_size, old_pop_size)

    def test_tournament_selection(self):
        print "TOURNAMENT SELECTION"

        # tournament selection
        old_pop_size = self.print_population("OLD", self.population)
        self.selection.tournament_selection(self.population)
        new_pop_size = self.print_population("NEW", self.population)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEqual(old_pop_size, new_pop_size)

    def test_elitest_selection(self):
        print "ELITEST SELECTION"

        # elitest selection
        old_pop_size = self.print_population("OLD", self.population)
        self.selection.elitest_selection(self.population)
        new_pop_size = self.print_population("NEW", self.population)

        self.assertEquals(old_pop_size, new_pop_size)

    def test_greedy_over_selection(self):
        print "GREEDY-OVER SELECTION"

        # create population of size 1000
        self.config["max_population"] = 1000
        generator = TreeGenerator(self.config)
        population = generator.init()

        # greedy over selection
        old_pop_size = self.print_population("OLD", population)
        self.selection.greedy_over_selection(population)
        new_pop_size = self.print_population("NEW", population)

        self.assertEquals(old_pop_size, new_pop_size)

    def test_select(self):
        old_pop_size = len(self.population.individuals)
        self.selection.select(self.population)
        new_pop_size = len(self.population.individuals)

        # assert
        # check for object uniqueness
        individual_ids = []
        for i in self.population.individuals:
            self.assertFalse(id(i) in individual_ids)
            individual_ids.append(id(i))

        self.assertEquals(old_pop_size, new_pop_size)
コード例 #4
0
ファイル: json_store_tests.py プロジェクト: defims/playground
class JSONStoreTests(unittest.TestCase):
    def setUp(self):
        self.config = {
            "max_population" : 10,

            "tree_generation" : {
                "method" : "FULL_METHOD",
                "initial_max_depth" : 4
            },

            "evaluator" : {
                "use_cache": True
            },

            "selection" : {
                "method" : "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },

            "crossover" : {
                "method" : "POINT_CROSSOVER",
                "probability" : 0.6
            },

            "mutation" : {
                "methods": ["POINT_MUTATION"],
                "probability" : 0.8
            },

            "function_nodes" : [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2}
            ],

            "terminal_nodes" : [
                {"type": "CONSTANT", "value": 1.0},
            ],

            "input_variables" : [
                {"type": "INPUT", "name": "x"}
            ],

            "data_file" : "tests/data/sine.dat",
            "response_variables" : [{"name": "y"}],


            "recorder" : {
                "store_file": "json_store_test.json",
                "compress": True
            }
        }
        config.load_data(self.config)


        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.json_store = JSONStore(self.config)
        self.json_store.setup_store()

        self.population = self.generator.init()
        results = []
        cache = {}
        evaluate(
            self.population.individuals,
            self.functions,
            self.config,
            results,
            cache,
            self.json_store
        )
        self.population.sort_individuals()

        self.selection = Selection(self.config, recorder=self.json_store)
        self.crossover = TreeCrossover(self.config, recorder=self.json_store)
        self.mutation = TreeMutation(self.config, recorder=self.json_store)

    def tearDown(self):
        self.json_store.delete_store()

        del self.config
        del self.functions
        del self.generator
        del self.population
        del self.json_store

    def test_setup_store(self):
        # assert
        file_exists = os.path.exists(self.config["recorder"]["store_file"])
        self.assertEquals(file_exists, True)

    def test_purge_store(self):
        # write something to store file
        self.json_store.store_file.write("Hello World\n")
        self.json_store.store_file.close()

        # purge store file
        self.json_store.purge_store()

        # assert
        store_file = open(self.config["recorder"]["store_file"], "r").read()
        self.assertEquals(len(store_file), 0)

    def test_delete_store(self):
        # delete store
        self.json_store.delete_store()

        # assert
        file_exists = os.path.exists(self.config["recorder"]["store_file"])
        self.assertEquals(file_exists, False)

    def test_record_population(self):
        self.json_store.record_population(self.population)

        record = self.json_store.generation_record
        self.assertNotEquals(record, {})
        self.assertEquals(record["population"]["generation"], 0)

    def test_record_selection(self):
        # record selection
        self.selection.select(self.population)

        # assert
        record = self.json_store.generation_record
        # import pprint
        # pprint.pprint(record)
        self.assertNotEquals(record, {})
        self.assertEquals(record["selection"]["selected"], 10)

    def test_record_crossover(self):
        # record crossover
        tree_1 = self.population.individuals[0]
        tree_2 = self.population.individuals[1]
        self.crossover.crossover(tree_1, tree_2)

        # assert
        record = self.json_store.generation_record
        self.assertNotEquals(record, {})

    def test_record_mutation(self):
        # record mutation
        tree = self.population.individuals[0]
        self.mutation.mutate(tree)

        # assert
        record = self.json_store.generation_record
        # pprint.pprint(record)
        self.assertNotEquals(record, {})

    def test_record_evaulation(self):
        # record evaluation
        results = []
        evaluate(
            self.population.individuals,
            self.functions,
            self.config,
            results,
            recorder=self.json_store
        )

        # assert
        record = self.json_store.generation_record
        # import pprint
        # pprint.pprint(record)
        self.assertEquals(record["evaluation"]["cache_size"], 10)
        self.assertEquals(record["evaluation"]["match_cached"], 0)

    def test_record_to_file(self):
        # write record to file and close
        self.json_store.record_population(self.population)
        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # open up the file and restore json to dict
        store_file = open(self.config["recorder"]["store_file"], "r").read()
        data = json.loads(store_file)

        # assert tests
        self.assertNotEquals(data, {})
        self.assertEquals(data["population"]["generation"], 0)

    def test_summarize_store(self):
        # write record to file and close
        self.json_store.setup_store()
        self.json_store.record_population(self.population)

        for i in range(5):
            tree_1 = self.population.individuals[0]
            tree_2 = self.population.individuals[1]
            self.crossover.crossover(tree_1, tree_2)

        for i in range(10):
            tree = self.population.individuals[0]
            self.mutation.mutate(tree)

        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # summarize
        self.json_store.summarize_store()

        # assert
        store_file = open(self.config["recorder"]["store_file"], "r")
        line = json.loads(store_file.read())
        store_file.close()

        self.assertIsNotNone(line)

    def test_finalize(self):
        # write record to file and close
        self.json_store.setup_store()
        self.json_store.record_population(self.population)
        self.json_store.record_to_file()
        self.json_store.store_file.close()

        # zip the store file
        self.json_store.finalize()

        # assert
        store_fp = self.config["recorder"]["store_file"]
        store_fp = list(os.path.splitext(store_fp))  # split ext
        store_fp[1] = ".zip"  # change ext to zip
        store_fp = "".join(store_fp)

        file_exists = os.path.exists(store_fp)
        self.assertEquals(file_exists, True)
コード例 #5
0
ファイル: play_tests.py プロジェクト: StanJBrown/playground
class PlayTests(unittest.TestCase):
    def setUp(self):
        random.seed(0)
        self.config = {
            "max_population":
            20,
            "max_generation":
            5,
            "tree_generation": {
                "method": "GROW_METHOD",
                "initial_max_depth": 4
            },
            "evaluator": {
                "use_cache": True
            },
            "selection": {
                "method": "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },
            "crossover": {
                "method": "POINT_CROSSOVER",
                "probability": 0.8
            },
            "mutation": {
                "methods": [
                    "POINT_MUTATION", "HOIST_MUTATION", "SUBTREE_MUTATION",
                    "SHRINK_MUTATION", "EXPAND_MUTATION"
                ],
                "probability":
                1.0
            },
            "function_nodes": [{
                "type": "FUNCTION",
                "name": "ADD",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "SUB",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "MUL",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "DIV",
                "arity": 2
            }, {
                "type": "FUNCTION",
                "name": "COS",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "SIN",
                "arity": 1
            }, {
                "type": "FUNCTION",
                "name": "RAD",
                "arity": 1
            }],
            "terminal_nodes": [{
                "type": "CONSTANT",
                "value": 1.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 2.0
            }, {
                "type": "CONSTANT",
                "value": 3.0
            }, {
                "type": "CONSTANT",
                "value": 4.0
            }, {
                "type": "CONSTANT",
                "value": 5.0
            }, {
                "type": "CONSTANT",
                "value": 6.0
            }, {
                "type": "CONSTANT",
                "value": 7.0
            }, {
                "type": "CONSTANT",
                "value": 8.0
            }, {
                "type": "CONSTANT",
                "value": 9.0
            }, {
                "type": "CONSTANT",
                "value": 10.0
            }],
            "input_variables": [{
                "type": "INPUT",
                "name": "x"
            }],
            "data_file":
            "tests/data/sine.dat",
            "response_variables": [{
                "name": "y"
            }]
        }
        config.load_data(self.config)
        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config, recorder=None)
        self.crossover = TreeCrossover(self.config, recorder=None)
        self.mutation = TreeMutation(self.config, recorder=None)

    def tearDown(self):
        del self.config

        del self.generator

        del self.selection
        del self.crossover
        del self.mutation

    def test_reproduce(self):
        tests = 1

        for i in range(tests):
            population = self.generator.init()

            res = []
            evaluate(population.individuals, self.functions, self.config, res)
            population.individuals = res

            # print "POPULATION"
            # for i in population.individuals:
            #     print i, i.score
            # print "\n"

            self.selection.select(population)

            # print "SELECTION"
            # for i in population.individuals:
            #     print i, i.score
            # print "\n"

            # reproduce
            play_details = play.play_details(population=population,
                                             selection=self.selection,
                                             crossover=self.crossover,
                                             mutation=self.mutation,
                                             evaluate=None,
                                             config=self.config)
            play.play_ga_reproduce(play_details)

            # print "REPRODUCE"
            # for i in population.individuals:
            #     print i, i.score

            # assert
            max_pop = self.config["max_population"]
            self.assertEquals(len(population.individuals), max_pop)
            self.assertTrue(population.config is self.config)
コード例 #6
0
ファイル: play_tests.py プロジェクト: defims/playground
class PlayTests(unittest.TestCase):
    def setUp(self):
        random.seed(0)
        self.config = {
            "max_population" : 20,
            "max_generation" : 5,

            "tree_generation" : {
                "method" : "GROW_METHOD",
                "initial_max_depth" : 4
            },

            "evaluator": {
                "use_cache" : True
            },

            "selection" : {
                "method" : "TOURNAMENT_SELECTION",
                "tournament_size": 2
            },

            "crossover" : {
                "method" : "POINT_CROSSOVER",
                "probability" : 0.8
            },

            "mutation" : {
                "methods": [
                    "POINT_MUTATION",
                    "HOIST_MUTATION",
                    "SUBTREE_MUTATION",
                    "SHRINK_MUTATION",
                    "EXPAND_MUTATION"
                ],
                "probability" : 1.0
            },

            "function_nodes" : [
                {"type": "FUNCTION", "name": "ADD", "arity": 2},
                {"type": "FUNCTION", "name": "SUB", "arity": 2},
                {"type": "FUNCTION", "name": "MUL", "arity": 2},
                {"type": "FUNCTION", "name": "DIV", "arity": 2},
                {"type": "FUNCTION", "name": "COS", "arity": 1},
                {"type": "FUNCTION", "name": "SIN", "arity": 1},
                {"type": "FUNCTION", "name": "RAD", "arity": 1}
            ],

            "terminal_nodes" : [
                {"type": "CONSTANT", "value": 1.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 2.0},
                {"type": "CONSTANT", "value": 3.0},
                {"type": "CONSTANT", "value": 4.0},
                {"type": "CONSTANT", "value": 5.0},
                {"type": "CONSTANT", "value": 6.0},
                {"type": "CONSTANT", "value": 7.0},
                {"type": "CONSTANT", "value": 8.0},
                {"type": "CONSTANT", "value": 9.0},
                {"type": "CONSTANT", "value": 10.0}
            ],

            "input_variables" : [
                {"type": "INPUT", "name": "x"}
            ],

            "data_file" : "tests/data/sine.dat",

            "response_variables" : [{"name": "y"}]
        }
        config.load_data(self.config)
        self.functions = GPFunctionRegistry("SYMBOLIC_REGRESSION")
        self.generator = TreeGenerator(self.config)

        self.selection = Selection(self.config, recorder=None)
        self.crossover = TreeCrossover(self.config, recorder=None)
        self.mutation = TreeMutation(self.config, recorder=None)

    def tearDown(self):
        del self.config

        del self.generator

        del self.selection
        del self.crossover
        del self.mutation

    def test_reproduce(self):
        tests = 1

        for i in range(tests):
            population = self.generator.init()

            res = []
            evaluate(population.individuals, self.functions, self.config, res)
            population.individuals = res

            # print "POPULATION"
            # for i in population.individuals:
            #     print i, i.score
            # print "\n"

            self.selection.select(population)

            # print "SELECTION"
            # for i in population.individuals:
            #     print i, i.score
            # print "\n"

            # reproduce
            play_details = play.play_details(
                population=population,
                selection=self.selection,
                crossover=self.crossover,
                mutation=self.mutation,
                evaluate=None,
                config=self.config
            )
            play.play_ga_reproduce(play_details)

            # print "REPRODUCE"
            # for i in population.individuals:
            #     print i, i.score

            # assert
            max_pop = self.config["max_population"]
            self.assertEquals(len(population.individuals), max_pop)
            self.assertTrue(population.config is self.config)