コード例 #1
0
def plot(dec_inter1, dec_inter2, nat_inter1, nat_inter2, ax, pdb, title1, title2):

    d1e = scorefileparse.get_energies(dec_inter1[pdb])
    d2e = scorefileparse.get_energies(dec_inter2[pdb])
    n1e = scorefileparse.get_energies(nat_inter1[pdb])
    n2e = scorefileparse.get_energies(nat_inter2[pdb])

    r = scorefileparse.get_rmsd(dec_inter1[pdb])

    scatterplot.draw_actual_plot(ax, d1e, d2e, r, pdb, title1,title2)

    #scatterplot.draw_actual_plot(ax, n1e, n2e, [], pdb, title1,title2)

    scatterplot.plot_regression(ax, scorefileparse.get_energies(dec_inter1[pdb])+scorefileparse.get_energies(nat_inter1[pdb])
                                ,scorefileparse.get_energies(dec_inter2[pdb])+scorefileparse.get_energies(nat_inter2[pdb]),False)
コード例 #2
0
def main(args):
    #read in and rename arguments
    inp_dir=args[1]
    scoretype=args[2]

    dec, nat = scorefileparse.read_dec_nat(inp_dir, [], scoretype)

    disc = discparse.read_dir(inp_dir)

    dec_norm = scorefileparse.norm_pdbs(dec)
    nat_norm = scorefileparse.norm_pdbs(nat,dec)

    [dec_inter, nat_inter, disc_inter] = scorefileparse.pdbs_intersect([dec_norm, nat_norm, disc]) 

    #labels = ["Average","1.0","1.5","2.0","2.5","3.0","4.0","6.0"]
    labels = ["Average"]
    energy_gap = [[] for l in labels]
    avg_disc = [[] for l in labels]

    for pdb in dec_inter.keys():

        for ind in xrange(0,len(labels)):
            lowest_dec = min([ e[0] for e in dec_inter[pdb].values() ])
            lowest_nat = min([ n[0] for n in nat_inter[pdb].values() if n[1] < 2.0 ])
            energy_gap[ind].append(lowest_nat - lowest_dec)
            avg_disc[ind].append(disc_inter[pdb][0])

    fig, axarr = conv.create_ax(len(labels), 1)

    for x_ind,l in enumerate(labels):
        ax = axarr[0,x_ind] 

        scatterplot.draw_actual_plot(ax, avg_disc[x_ind], energy_gap[x_ind], [], l,"Disc","Energy Gap")

        scatterplot.plot_regression(ax, avg_disc[x_ind], energy_gap[x_ind], False, False)

    title = os.path.basename(inp_dir)

    filename=inp_dir + "/test.txt"

    conv.save_fig(fig, filename, "disc_v_egap", len(labels)*3, 4)
コード例 #3
0
def plot(disc_metrics_1, disc_metrics_2, title1, title2, output_pre, add_slash=True):
    pdbs = sorted(disc_metrics_1.keys())
    n_metrics = len(disc_metrics_1[pdbs[0]])

    fig, axarr = conv.create_ax(n_metrics, 1)

    for x_ind,metric_name in enumerate(disc_metrics_1[pdbs[0]].keys()):
        x = []
        y = []
        ax = axarr[0,x_ind]
        for pdb in pdbs:
            x.append(disc_metrics_1[pdb][metric_name])
            y.append(disc_metrics_2[pdb][metric_name])

        scatterplot.draw_actual_plot(ax, x, y, 'b', metric_name, title1,title2, size=20, edgecolors='k')
        scatterplot.plot_regression(ax,x,y,False)

    if add_slash:
        filename = output_pre + "/" + title1 + "_" + title2 + ".txt"
    else:
	filename = output_pre + title1 + "_" + title2 + ".txt"
    suffix="disc_v_disc"
 
    conv.save_fig(fig, filename, suffix, n_metrics*3, 3, size=9)
コード例 #4
0
ファイル: corr_counts.py プロジェクト: arubenstein/deep_seq
def plot_corr(c_1, c_2, ax, x_axis, y_axis):
    scatterplot.draw_actual_plot(ax, c_1, c_2, 'b', "Counts vs. Counts", x_axis, y_axis, size=10)

    scatterplot.plot_regression(ax, c_1, c_2)