def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:, 0] = np.array([int(D) for D in t[:, 0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = 'number of dimensions' p.legends = [ r'$\mathcal{E}^{H}$', r'$\mathcal{E}^{L}$', r'$\mathcal{E}^{S}$', r'$k$-means', r'GMM' ] p.colors = ['b', 'r', 'g', 'm', 'c'] p.symbols = ['o', 's', 'D', '^', 'v'] p.lines = ['-', '-', '-', '-', '-'] #p.output = './experiments_figs/normal_highdim_mean.pdf' p.output = './experiments_figs/normal_highdim_cov.pdf' #p.bayes = 0.86 p.bayes = 0.9537075 #p.xlim = [10, 200] p.xlim = [10, 700] p.make_plot(table)
def make_plot_difference(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:,0] = np.array([int(D) for D in t[:,0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = 'number of points' p.ylabel = 'difference in accuracy' p.legends = [ r'$\mathcal{E}^{H} - \mathcal{E}^{L}$', r'$\mathcal{E}^{H} - \mathcal{E}^{S}$', ] p.colors = ['b', 'r'] p.symbols = ['o', 's'] #p.output = './experiments_figs/normal_kernels_difference.pdf' p.output = './experiments_figs/lognormal_kernels_difference.pdf' p.doublex = True p.legcols = 1 #p.bayes = 0.0 p.xlim = [10, 400] p.make_plot(table)
def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:,0] = np.array([int(D) for D in t[:,0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = 'number of points' p.legends = [r'$\mathcal{E}^{H}$, $\rho$', r'$\mathcal{E}^{H}$, $\rho_{1/2}$', r'$\mathcal{E}^{H}$, $\rho_{e}$', r'$k$-means', r'GMM'] p.colors = ['b', 'r', 'g', 'm', 'c'] p.symbols = ['o', 's', 'D', '^', 'v'] p.lines = ['-', '-', '-', '-', '-'] p.output = './experiments_figs/normal_kernels.pdf' #p.output = './experiments_figs/lognormal_kernels.pdf' p.doublex = True p.bayes = 0.9 p.xlim = [10, 400] p.make_plot(table)
def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:, 0] = np.array([int(D) for D in t[:, 0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = r'$n$' p.ylabel = r'accuracy' p.legends = [r'$\mathcal{E}^{H}$-clustering', r'$k$-means', 'GMM'] p.colors = ['b', 'r', 'g'] p.lines = ['-', '-', '-'] #p.output = './experiments_figs2/1D_normal.pdf' p.output = './experiments_figs2/1D_lognormal.pdf' p.bayes = 0.88 #p.bayes = 0.852 p.xlim = [10, 800] #p.ylim = [0.75,0.89] p.ylim = [0.5, 0.89] #p.loc = [0.45,0.5] p.loc = [0.45, 0.3] p.make_plot(table)
def make_plot_difference(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:, 0] = np.array([int(D) for D in t[:, 0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = r'$\#$ points' p.ylabel = 'difference in accuracy' p.legends = [ #r'$\mathcal{E}^{H} - \textnormal{kernel $k$-means}$', #r'$\mathcal{E}^{H} - \textnormal{spectral-clustering}$', r'$\mathcal{E}^{H}\mbox{-clustering} - \mbox{kernel $k$-means}$', r'$\mathcal{E}^{H}\mbox{-clustering} - \mbox{spectral clustering}$', ] p.colors = ['b', 'r'] p.symbols = ['o', 's'] p.output = './experiments_figs2/normal_kernels_difference.pdf' #p.output = './experiments_figs2/lognormal_kernels_difference.pdf' #p.doublex = True p.legcols = 1 #p.bayes = 0.0 p.xlim = [10, 400] #p.loc = 1 p.loc = 3 p.make_plot(table)
def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:, 0] = np.array([int(D) for D in t[:, 0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = r'$\#$ points' p.ylabel = 'accuracy' p.legends = [ r'$\mathcal{E}^{H}$-clustering, $\rho_1$', r'$\mathcal{E}^{H}$-clustering, $\rho_{1/2}$', r'$\mathcal{E}^{H}$-clustering, $\widetilde{\rho}_{1}$', r'$k$-means', r'GMM' ] p.colors = ['b', 'r', 'g', 'm', 'c'] p.symbols = ['o', 's', 'D', '^', 'v'] p.lines = ['-', '-', '-', '-', '-'] #p.output = './experiments_figs2/normal_kernels.pdf' p.output = './experiments_figs2/lognormal_kernels.pdf' #p.doublex = True p.bayes = 0.9 p.xlim = [10, 400] #p.ylim = [0.6, 0.91] p.ylim = [0.55, 0.91] p.loc = 0 p.make_plot(table)
def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:, 0] = np.array([int(D) for D in t[:, 0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = r'$\#$ dimensions' p.ylabel = r'accuracy' p.legends = [ r'$\mathcal{E}^{H}$-clustering', r'kernel $k$-means', #r'$\mathcal{E}^L$', r'spectral clustering', r'$k$-means', r'GMM' ] p.loc = 3 p.colors = ['b', 'r', 'g', 'm', 'c'] p.symbols = ['o', 's', 'D', '^', 'v'] p.lines = ['-', '-', '-', '-', '-'] p.output = './experiments_figs2/normal_highdim_mean.pdf' #p.output = './experiments_figs2/normal_highdim_cov.pdf' p.bayes = 0.86 #p.bayes = 0.9537075 p.xlim = [10, 200] #p.xlim = [10, 700] p.ylim = [0.55, 0.87] #p.ylim = [0.55, 0.965] p.make_plot(table)
def make_plot(*data_files): table = [] for f in data_files: t = np.loadtxt(f, delimiter=',') t[:,0] = np.array([int(D) for D in t[:,0]]) table.append(t) table = np.concatenate(table) ## customize plot below ## p = plot.ErrorBar() p.xlabel = 'number of unbalanced points' p.legends = [r'$\mathcal{E}^{H}$', r'$\mathcal{E}^{L}$', r'$\mathcal{E}^{S}$', r'$k$-means', r'GMM'] p.colors = ['b', 'r', 'g', 'm', 'c'] p.symbols = ['o', 's', 'D', '^', 'v'] p.xlim = [0,240] p.output = './experiments_figs/normal_unbalanced.pdf' p.make_plot(table)