コード例 #1
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotROC(graphMap, saveDir, saveName, saveFormats):
    '''
    Plot ROC curves (signal efficiency vs bkg efficiency)
    '''
    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()

    leg = plot.CreateLegend(0.25, 0.25, 0.60, 0.45)  #0.50, 0.25, 0.85, 0.45

    # For-loop: All graphs
    for i, k in enumerate(graphMap["graph"], 0):
        gr = graphMap["graph"][i]
        gr_name = graphMap["name"][i]
        plot.ApplyStyle(gr, i + 2)
        gr.GetXaxis().SetTitle("Signal Efficiency")
        gr.GetYaxis().SetTitle("Misidentification rate")
        if i == 0:
            gr.Draw("apl")
        else:
            gr.Draw("pl same")
        leg.AddEntry(gr, gr_name, "l")

    leg.Draw("same")

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()
    return
コード例 #2
0
def PlotLossFunction(losses, nepochs, saveDir):
    '''
    Plot the loss function vs the number of the epoch
    '''
    def ApplyStyle(h, ymin, ymax, color):
        h.SetLineColor(color)
        h.SetMarkerColor(color)
        h.SetMarkerStyle(8)
        h.SetMarkerSize(0.6)
        h.SetMaximum(ymax)
        h.SetMinimum(ymin)
        h.GetXaxis().SetTitle("# epoch")
        h.GetYaxis().SetTitle("Loss")

    ROOT.gStyle.SetOptStat(0)
    canvas = ROOT.TCanvas()
    canvas.cd()
    leg=plot.CreateLegend(0.6, 0.75, 0.9, 0.85)

    xarr = []
    for i in range(1, nepochs+1):
        xarr.append(i)


    if (opt.lam > 0):
        hLf  = ROOT.TGraph(len(xarr), array('d', xarr), array('d', losses["L_f"]))
        hLr  = ROOT.TGraph(len(xarr), array('d', xarr), array('d', losses["L_r"]))
        hLfr = ROOT.TGraph(len(xarr), array('d', xarr), array('d', losses["L_f - L_r"]))

        ymax = max(hLf.GetHistogram().GetMaximum(), hLr.GetHistogram().GetMaximum(), hLfr.GetHistogram().GetMaximum())
        ymin = min(hLf.GetHistogram().GetMinimum(), hLr.GetHistogram().GetMinimum(), hLfr.GetHistogram().GetMinimum())
        ymax = ymax + 1
        ymin = ymin - 1
                
        ApplyStyle(hLf, ymin, ymax, ROOT.kRed)
        ApplyStyle(hLr, ymin, ymax, ROOT.kBlue)
        ApplyStyle(hLfr, ymin, ymax, ROOT.kGreen+1)
        
        hLf.Draw("pa")
        hLr.Draw("p same")
        hLfr.Draw("p same")
        
        leg.AddEntry(hLf, "L_{c}","pl")
        leg.AddEntry(hLr,"L_{r}","pl")
        leg.AddEntry(hLfr,"L_{c} - L_{r}","pl")

    else:
        h_loss = ROOT.TGraph(len(xarr), array('d', xarr), array('d', losses["loss"]))
        ymax = h_loss.GetHistogram().GetMaximum()
        ymin = h_loss.GetHistogram().GetMinimum()
        ApplyStyle(h_loss, ymin, ymax,  ROOT.kGreen +1)
        h_loss.Draw("pa")
        leg.AddEntry(h_loss, "L_{c}","pl")

    leg.Draw()
    saveName = "Loss_lam%s_opt%s" %(opt.lam, opt.opt)
    plot.SavePlot(canvas, saveDir, saveName)
    canvas.Close()
    return
コード例 #3
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotOutput(Y_train, Y_test, saveDir, saveName, isSB, saveFormats):

    ROOT.gStyle.SetOptStat(0)

    # Create canvas
    canvas = plot.CreateCanvas()
    canvas.cd()
    canvas.SetLogy()

    # Create histograms
    h1 = ROOT.TH1F('train', '', 50, 0.0, 1.0)
    h2 = ROOT.TH1F('test', '', 50, 0.0, 1.0)

    # Fill histograms
    for r in Y_train:
        h1.Fill(r)

    for r in Y_test:
        h2.Fill(r)

    if 0:
        h1.Scale(1. / h1.Integral())
        h2.Scale(1. / h2.Integral())

    ymax = max(h1.GetMaximum(), h2.GetMaximum())

    plot.ApplyStyle(h1, ROOT.kMagenta + 1)
    plot.ApplyStyle(h2, ROOT.kGreen + 2)

    for h in [h1, h2]:
        h.SetMinimum(100)
        h.SetMaximum(ymax * 1.1)
        h.GetXaxis().SetTitle("Output")
        h.GetYaxis().SetTitle("Entries")
        h.Draw("HIST SAME")

    # What is this for? Ask soti
    graph = plot.CreateGraph([0.5, 0.5], [0, ymax * 1.1])
    graph.Draw("same")

    # Create legend
    leg = plot.CreateLegend(0.6, 0.75, 0.9, 0.85)
    if isSB:
        leg.AddEntry(h1, "signal", "l")
        leg.AddEntry(h2, "background", "l")
    else:
        leg.AddEntry(h1, "train", "l")
        leg.AddEntry(h2, "test", "l")
    leg.Draw()

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()
    return
コード例 #4
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotTGraph(xVals, xErrs, yVals, yErrs, saveDir, saveName, jsonWr,
               saveFormats):

    # Create a TGraph object
    graph = plot.GetGraph(xVals, yVals, xErrs, xErrs, yErrs, yErrs)

    # Create a TCanvas object
    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()
    #canvas.SetLogy()

    # Create the TGraph with asymmetric errors
    tgraph = ROOT.TGraphAsymmErrors(len(xVals), array.array("d", xVals),
                                    array.array("d", yVals),
                                    array.array("d", xErrs),
                                    array.array("d", xErrs),
                                    array.array("d", yErrs),
                                    array.array("d", yErrs))
    tgraph.SetName(saveName)
    if "efficiency" in saveName.lower():
        legName = "efficiency"
        if saveName.lower().endswith("sig"):
            plot.ApplyStyle(tgraph, ROOT.kBlue)
        else:
            plot.ApplyStyle(tgraph, ROOT.kRed)
    elif "significance" in saveName.lower():
        legName = "significance"
        if saveName.lower().endswith("sig"):
            plot.ApplyStyle(tgraph, ROOT.kGreen)
        else:
            plot.ApplyStyle(tgraph, ROOT.kGreen + 3)
    else:
        plot.ApplyStyle(tgraph, ROOT.kOrange)

    # Draw the TGraph
    tgraph.GetXaxis().SetLimits(-0.05, 1.0)
    #tgraph.SetMaximum(1.1)
    #tgraph.SetMinimum(0)
    tgraph.Draw("AC")

    # Create legend
    leg = plot.CreateLegend(0.60, 0.70, 0.85, 0.80)
    leg.AddEntry(tgraph, legName, "l")
    leg.Draw()

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()

    # Write the Tgraph into the JSON file
    jsonWr.addGraph(saveName, tgraph)
    return
コード例 #5
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotInputs(signal, bkg, var, saveDir, saveFormats):
    ROOT.gStyle.SetOptStat(0)

    # Create canvas
    canvas = plot.CreateCanvas()
    canvas.cd()

    info = plot.GetHistoInfo(var)
    # Create histograms
    hsignal = ROOT.TH1F('signal', '', info["nbins"], info["xmin"],
                        info["xmax"])
    hbkg = ROOT.TH1F('bkg', '', info["nbins"], info["xmin"], info["xmax"])

    # Fill histograms
    for r in signal:
        hsignal.Fill(r)

    for r in bkg:
        hbkg.Fill(r)

    if 1:
        hsignal.Scale(1. / hsignal.Integral())
        hbkg.Scale(1. / hbkg.Integral())

    ymax = max(hsignal.GetMaximum(), hbkg.GetMaximum())

    plot.ApplyStyle(hsignal, ROOT.kAzure - 3)
    hsignal.SetFillColor(ROOT.kAzure - 3)

    plot.ApplyStyle(hbkg, ROOT.kRed + 2)

    for h in [hsignal, hbkg]:
        h.SetMaximum(ymax * 1.2)
        h.GetXaxis().SetTitle(info["xlabel"])
        h.GetYaxis().SetTitle(info["ylabel"])

    hsignal.Draw("HIST")
    hbkg.Draw("HIST SAME")

    # Create legend
    leg = plot.CreateLegend(0.6, 0.75, 0.9, 0.85)
    leg.AddEntry(hsignal, "Truth-matched", "f")  #"pl"
    leg.AddEntry(hbkg, "Unmatched", "l")  #"pl"
    leg.Draw()

    plot.SavePlot(canvas, saveDir, var, saveFormats, True)
    canvas.Close()
    return
コード例 #6
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotOvertrainingTest(Y_train_S, Y_test_S, Y_train_B, Y_test_B, saveDir,
                         saveName, saveFormats):
    def ApplyStyle(histo):
        if "_s" in histo.GetName():
            color = ROOT.kBlue
        else:
            color = ROOT.kRed

        plot.ApplyStyle(h, color)
        histo.SetMarkerSize(0.5)
        histo.GetXaxis().SetTitle("Output")
        histo.GetYaxis().SetTitle("Entries")
        histo.SetMinimum(10)
        return

    def GetLegendStyle(histoName):
        if "test" in histoName:
            legStyle = "f"
            if "_s" in histoName:
                legText = "signal (test)"
            else:
                legText = "background (test)"
        elif "train" in histoName:
            legStyle = "p"
            if "_s" in histoName:
                legText = "signal (train)"
            else:
                legText = "background (train)"
        return legText, legStyle

    def DrawStyle(histoName):
        if "train" in histoName:
            _style = "P"
        else:
            _style = "HIST"
        return _style

    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()
    canvas.SetLogy()

    hList = []
    DataList = [Y_train_S, Y_test_S, Y_train_B, Y_test_B]
    ymax = 0
    nbins = 500

    # Create the histograms
    htrain_s = ROOT.TH1F('train_s', '', nbins, 0.0, 1.0)
    htest_s = ROOT.TH1F('test_s', '', nbins, 0.0, 1.0)
    htrain_b = ROOT.TH1F('train_b', '', nbins, 0.0, 1.0)
    htest_b = ROOT.TH1F('test_b', '', nbins, 0.0, 1.0)

    # Append to list
    hList.append(htrain_s)
    hList.append(htest_s)
    hList.append(htrain_b)
    hList.append(htest_b)

    for i in range(len(DataList)):
        for r in DataList[i]:
            hList[i].Fill(r)

    # Clone the histograms
    htrain_s1 = htrain_s.Clone("train_s")
    htrain_b1 = htrain_b.Clone("train_b")
    htest_s1 = htest_s.Clone("test_s")
    htest_b1 = htest_b.Clone("test_b")
    drawStyle = "HIST SAME"
    leg = plot.CreateLegend(0.55, 0.68, 0.85, 0.88)

    for h in hList:
        h.Rebin(10)
        # Legend
        legText, legStyle = GetLegendStyle(h.GetName())
        leg.AddEntry(h, legText, legStyle)
        ApplyStyle(h)

    ymax = max(htrain_s.GetMaximum(), htest_s.GetMaximum(),
               htrain_b.GetMaximum(), htest_b.GetMaximum())
    for h in hList:
        h.SetMaximum(ymax * 2)
        h.Draw(DrawStyle(h.GetName()) + " SAME")

    #graph = plot.CreateGraph([0.5, 0.5], [0, ymax*2])
    #graph.Draw("same")
    #leg.Draw()

    # Save & close canvas
    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()
    return htrain_s1, htest_s1, htrain_b1, htest_b1
コード例 #7
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotEfficiency(htest_s, htest_b, saveDir, saveName, saveFormats):
    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()
    canvas.SetLeftMargin(0.145)
    canvas.SetRightMargin(0.11)

    # Calculate signal and background efficiency vs output
    xvalue, eff_s, eff_b, error = CalcEfficiency(htest_s, htest_b)
    graph_s = plot.GetGraph(xvalue, eff_s, error, error, error, error)
    graph_b = plot.GetGraph(xvalue, eff_b, error, error, error, error)

    plot.ApplyStyle(graph_s, ROOT.kBlue)
    plot.ApplyStyle(graph_b, ROOT.kRed)

    # Calculate significance vs output
    h_signif0, h_signif1 = CalcSignificance(htest_s, htest_b)

    plot.ApplyStyle(h_signif0, ROOT.kGreen)
    plot.ApplyStyle(h_signif1, ROOT.kGreen + 3)

    #=== Get maximum of significance
    maxSignif0 = h_signif0.GetMaximum()
    maxSignif1 = h_signif1.GetMaximum()
    maxSignif = max(maxSignif0, maxSignif1)

    # Normalize significance
    h_signifScaled0 = h_signif0.Clone("signif0")
    h_signifScaled0.Scale(1. / float(maxSignif))

    h_signifScaled1 = h_signif1.Clone("signif1")
    h_signifScaled1.Scale(1. / float(maxSignif))

    #Significance: Get new maximum
    ymax = max(h_signifScaled0.GetMaximum(), h_signifScaled1.GetMaximum())

    for obj in [graph_s, graph_b, h_signifScaled0, h_signifScaled1]:
        obj.GetXaxis().SetTitle("Output")
        obj.GetYaxis().SetTitle("Efficiency")
        obj.SetMaximum(ymax * 1.1)
        obj.SetMinimum(0)
    #Draw
    h_signifScaled0.Draw("HIST")
    h_signifScaled1.Draw("HIST SAME")
    graph_s.Draw("PL SAME")
    graph_b.Draw("PL SAME")

    graph = plot.CreateGraph([0.5, 0.5], [0, ymax * 1.1])
    graph.Draw("same")

    #Legend
    leg = plot.CreateLegend(0.50, 0.25, 0.85, 0.45)
    leg.AddEntry(graph_s, "Signal Efficiency", "l")
    leg.AddEntry(graph_b, "Bkg Efficiency", "l")
    leg.AddEntry(h_signifScaled0, "S/#sqrt{S+B}", "l")
    leg.AddEntry(h_signifScaled1, "2#times(#sqrt{S+B} - #sqrt{B})", "l")
    leg.Draw()

    # Define Right Axis (Significance)
    signifColor = ROOT.kGreen + 2
    rightAxis = ROOT.TGaxis(1, 0, 1, 1.1, 0, 1.1 * maxSignif, 510, "+L")
    rightAxis.SetLineColor(signifColor)
    rightAxis.SetLabelColor(signifColor)
    rightAxis.SetTitleColor(signifColor)
    rightAxis.SetTitleOffset(1.25)
    rightAxis.SetLabelOffset(0.005)
    rightAxis.SetLabelSize(0.04)
    rightAxis.SetTitleSize(0.045)
    rightAxis.SetTitle("Significance")
    rightAxis.Draw()

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()
    return
コード例 #8
0
ファイル: func.py プロジェクト: attikis/Keras_ANN
def PlotAndWriteJSON(signal, bkg, saveDir, saveName, jsonWr, saveFormats,
                     **kwargs):

    resultsDict = {}
    resultsDict["signal"] = signal
    resultsDict["background"] = bkg

    normalizeToOne = False
    if "normalizeToOne" in kwargs:
        normalizeToOne = kwargs["normalizeToOne"]

# Create canvas
    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()

    hList = []
    gList = []
    yMin = 100000
    yMax = -1
    xMin = 0.0
    xMax = 1.0
    nBins = 50
    xTitle = "DNN output"
    yTitle = "Entries"
    log = True

    if "log" in kwargs:
        log = kwargs["log"]

    if "xTitle" in kwargs:
        xTitle = kwargs["xTitle"]

    if "yTitle" in kwargs:
        yTitle = kwargs["yTitle"]
    elif "output" in saveName.lower():
        xTitle = "Entries"
    elif "efficiency" in saveName.lower():
        xTitle = "Efficiency"
    elif "significance" in saveName.lower():
        xTitle = "Significance"
    else:
        pass

    if "xMin" in kwargs:
        xMin = kwargs['xMin']
    if "xMax" in kwargs:
        xMax = kwargs['xMax']
    if "nBins" in kwargs:
        xBins = kwargs['nBins']

    # For-loop:
    for i, key in enumerate(resultsDict.keys(), 0):

        h = ROOT.TH1F(key, '', nBins, xMin, xMax)
        for j, x in enumerate(resultsDict[key], 0):
            h.Fill(x)
            try:
                yMin = min(x[0], yMin)
            except:
                pass

        # Save maximum
        yMax = max(h.GetMaximum(), yMax)

        # Customise & append to list
        plot.ApplyStyle(h, i + 1)

        if normalizeToOne:
            if "ymax" in kwargs:
                yMax = kwargs["yMax"]
            else:
                yMax = 1.0
            if "yMin" in kwargs:
                yMin = kwargs["yMin"]
            else:
                yMin = 1e-4

            if h.Integral() > 0.0:
                h.Scale(1. / h.Integral())
        hList.append(h)

    if yMin <= 0.0:
        yMin = 100
    if log:
        canvas.SetLogy()

    # For-loop: All histograms
    for i, h in enumerate(hList, 0):
        h.SetMinimum(yMin * 0.85)
        h.SetMaximum(yMax * 1.15)

        h.GetXaxis().SetTitle(xTitle)
        h.GetYaxis().SetTitle(yTitle)

        if i == 0:
            h.Draw("HIST")
        else:
            h.Draw("HIST SAME")

    # Create legend
    leg = plot.CreateLegend(0.6, 0.75, 0.9, 0.85)
    for h in hList:
        leg.AddEntry(h, h.GetName(), "l")
    leg.Draw()

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()

    # Create TGraph
    for h in hList:
        gList.append(convertHistoToGaph(h))

    # Write the Tgraph into the JSON file
    for gr in gList:
        gName = "%s_%s" % (saveName, gr.GetName())
        jsonWr.addGraph(gName, gr)
    return
コード例 #9
0
ファイル: plotTopMass.py プロジェクト: attikis/Keras_ANN
def main():
    ROOT.gStyle.SetOptStat(0)

    # Apply tdr style
    style = tdrstyle.TDRStyle()
    style.setOptStat(False)
    style.setGridX(False)
    style.setGridY(False)

    # Definitions
    filename = opts.filename
    tfile = ROOT.TFile.Open(filename)

    dName = ""
    if ("TT" in filename):
        dName = "TT"
    elif ("QCD" in filename):
        dName = "QCD"

    #Signal and background branches
    signal = uproot.open(filename)["treeS"]
    background = uproot.open(filename)["treeB"]

    # Input list
    inputList = []
    inputList.append("TrijetPtDR")
    inputList.append("TrijetDijetPtDR")
    inputList.append("TrijetBjetMass")
    inputList.append("TrijetLdgJetBDisc")
    inputList.append("TrijetSubldgJetBDisc")
    inputList.append("TrijetBJetLdgJetMass")
    inputList.append("TrijetBJetSubldgJetMass")
    inputList.append("TrijetMass")
    inputList.append("TrijetDijetMass")
    inputList.append("TrijetBJetBDisc")
    inputList.append("TrijetSoftDrop_n2")
    inputList.append("TrijetLdgJetCvsL")
    inputList.append("TrijetSubldgJetCvsL")
    inputList.append("TrijetLdgJetPtD")
    inputList.append("TrijetSubldgJetPtD")
    inputList.append("TrijetLdgJetAxis2")
    inputList.append("TrijetSubldgJetAxis2")
    inputList.append("TrijetLdgJetMult")
    inputList.append("TrijetSubldgJetMult")

    nInputs = len(inputList)

    #Signal and background dataframes
    df_signal = signal.pandas.df(inputList)
    df_background = background.pandas.df(inputList)

    # Number of events to predict the output and plot the top-quark mass
    if (opts.plotSignal):
        nEvts = len(df_signal.index)
    else:
        nEvts = len(df_background.index)

    # User few events for testing
    if (opts.test):
        nEvts = 1000

    print "=== Number of events: ", nEvts
    #Signal and background datasets
    dset_signal = df_signal.values
    dset_background = df_background.values

    # Concat signal, background datasets
    df_list = [df_signal, df_background]
    df_all = pandas.concat(df_list)
    dataset = df_all.values

    # Target (top-quark mass) datasets
    dset_target_all = pandas.concat([
        signal.pandas.df(["TrijetMass"]),
        background.pandas.df(["TrijetMass"])
    ]).values
    dset_target_bkg = background.pandas.df(["TrijetMass"]).values
    dset_target_signal = signal.pandas.df(["TrijetMass"]).values

    # Signal and background inputs
    X_signal = dset_signal[:nEvts, 0:nInputs]
    X_background = dset_background[:nEvts, 0:nInputs]

    if (opts.plotSignal):
        X = dset_signal[:nEvts, 0:nInputs]
        target = dset_target_signal[:nEvts, :]
    else:
        X = dset_background[:nEvts, 0:nInputs]
        target = dset_target_bkg[:nEvts, :]

    #Load models
    lamValues = [0, 1, 5, 10,
                 20]  #, 100, 500] # fixme! should be given as option
    colors = [
        ROOT.kBlack, ROOT.kBlue, ROOT.kMagenta, ROOT.kOrange, ROOT.kRed,
        ROOT.kGreen, ROOT.kOrange + 7
    ]
    canvas = plot.CreateCanvas()
    canvas.cd()

    ymaxFactor = 1.1
    ymax = 0
    histoList = []

    if (opts.setLogY):
        canvas.SetLogy()
        ymaxFactor = 2

    # load the models with different lambda
    for lam in lamValues:
        print "Lambda = ", lam
        if (lam == 0):
            # For labda = 0 load the simple classification (sequential) model
            loaded_model = load_model(
                'models_16Nov/Model_relu_relu_relu_sigmoid.h5')
        else:
            loaded_model = load_model(
                'models_16Nov/modelANN_32_Adam_0p0008_500_tanh_relu_msle_lam%s.h5'
                % (lam))

        # Compile the model
        loaded_model.compile(loss='binary_crossentropy',
                             optimizer='adam',
                             metrics=['acc'])
        Y = loaded_model.predict(X, verbose=1)

        # Concatenate Y (predicted output) and target (top-quark mass)
        # Ymass 0 column:   output
        # Ymass 1st column: top-quark mass
        Ymass = numpy.concatenate((Y, target), axis=1)

        # Get selected top candidates (pass the output working point)
        Ymass_sel = Ymass[Ymass[:, 0] >=
                          opts.wp]  # Select samples with y > WP (col 0)
        massSel = Ymass_sel[:,
                            1]  # Get the top-quark mass (col 1) for the selected samples.

        #Plot resutls
        nbins = 100
        xmin = 0
        xmax = 1000

        # Change x-axis range when plotting the signal
        if (opts.plotSignal):
            nbins = 45
            xmax = 450

        width = float(xmax) / nbins
        histo = ROOT.TH1F('histo_lam%s' % (lam), '', nbins, xmin, xmax)
        mass_sel = []
        print "selected entries:", len(massSel)

        for mass in massSel:
            histo.Fill(mass)

        histoList.append(histo.Clone("histoClone_lam%s" % lam))

        del loaded_model

    # Create legend
    leg = plot.CreateLegend(0.6, 0.67, 0.9, 0.85)
    #Legend text
    dText = dName
    dText = dText.replace("TT", "t#bar{t}")

    # Loop over the histograms in the histoList
    for i in range(len(histoList)):
        leg.AddEntry(histoList[i],
                     "%s (#lambda = %.0f)" % (dText, lamValues[i]), "f")
        # Normalize histograms to unity
        histoList[i].Scale(1. / (histoList[i].Integral()))
        ymax = max(ymax, histoList[i].GetMaximum())
        histoList[i].GetXaxis().SetTitle("m_{top} (GeV)")
        histoList[i].GetYaxis().SetTitle("Arbitrary Units / %.0f GeV" %
                                         (width))
        plot.ApplyStyle(histoList[i], colors[i])
        histoList[i].Draw("HIST same")

    for i in range(len(histoList)):
        histoList[i].SetMaximum(ymax * ymaxFactor)
    leg.Draw("same")

    if (opts.plotSignal):
        sbText = "truth-matched"
    else:
        sbText = "unmatched"

    # Additional text
    tex1 = plot.Text(" %s top candidates" % sbText, 0.85, 0.5)
    tex2 = plot.Text(" with output value > %s" % (opts.wp), 0.82, 0.45)

    #Draw text
    tex1.Draw()
    tex2.Draw()

    # Draw line to indicate the real value of the top-quark mass
    graph = plot.CreateGraph([173., 173.], [0, ymax * ymaxFactor])
    graph.Draw("same")

    # CMS extra text and lumi text
    #plot.CMSText("CMS Preliminary") #Fixme! cmsExtra doesn't work
    #cmsText.Draw()

    # Output directory
    dirName = plot.getDirName(opts.saveDir)

    # Save the plot
    saveName = opts.saveName
    if (opts.saveName == "TopMassANN"):
        saveName = "TopMassANN_%s_%s" % (dName, sbText.replace("-", "_"))

    # Save the histogram
    plot.SavePlot(canvas, dirName, saveName)
コード例 #10
0
def PlotAndWriteJSON(signal, bkg, saveDir, saveName, jsonWr, saveFormats):

    resultsDict = {}
    resultsDict["signal"] = signal
    resultsDict["background"] = bkg

    # Create canvas
    ROOT.gStyle.SetOptStat(0)
    canvas = plot.CreateCanvas()
    canvas.cd()

    hList = []
    gList = []
    yMin = 100000
    yMax = -1

    # For-loop:
    for i, key in enumerate(resultsDict.keys(), 0):

        h = ROOT.TH1F(key, '', 50, 0.0, 1.0)
        for j, x in enumerate(resultsDict[key], 0):
            h.Fill(x)
            try:
                yMin = min(x[0], yMin)
            except:
                pass

        # Save maximum
        yMax = max(h.GetMaximum(), yMax)

        # Customise & append to list
        plot.ApplyStyle(h, i + 1)
        hList.append(h)

    if yMin <= 0.0:
        yMin = 100
    canvas.SetLogy()

    # For-loop: All histograms
    for i, h in enumerate(hList, 0):
        h.SetMinimum(yMin * 0.85)
        h.SetMaximum(yMax * 1.15)
        h.GetXaxis().SetTitle("DNN output")
        if "output" in saveName.lower():
            h.GetYaxis().SetTitle("Entries")
        elif "efficiency" in saveName.lower():
            h.GetYaxis().SetTitle("Efficiency")
        elif "significance" in saveName.lower():
            h.GetYaxis().SetTitle("Significance")
        else:
            pass

        if i == 0:
            h.Draw("HIST")
        else:
            h.Draw("HIST SAME")

    # Create legend
    leg = plot.CreateLegend(0.6, 0.75, 0.9, 0.85)
    for h in hList:
        leg.AddEntry(h, h.GetName(), "l")
    leg.Draw()

    plot.SavePlot(canvas, saveDir, saveName, saveFormats)
    canvas.Close()

    # Create TGraph
    for h in hList:
        gList.append(convertHistoToGaph(h))

    # Write the Tgraph into the JSON file
    for gr in gList:
        gName = "%s_%s" % (saveName, gr.GetName())
        jsonWr.addGraph(gName, gr)
    return