def network_optimization_plot(dir: str, graphs: List[Any]) -> None: df_all = read_iperf( os.path.join(os.path.realpath(dir), "iperf-all-on-latest.tsv"), "offloads+\nzerocopy") df_offload = read_iperf( os.path.join(os.path.realpath(dir), "iperf-offload_off-latest.tsv"), "no offloads") df_zcopy = read_iperf( os.path.join(os.path.realpath(dir), "iperf-zerocopy_off-latest.tsv"), "no zerocopy") df = pd.concat([df_all, df_offload, df_zcopy]) g = catplot( data=apply_aliases(df), x=column_alias("type"), y=column_alias("iperf-throughput"), kind="bar", height=2.5, # aspect=1.2, color="black", palette=None, ) apply_to_graphs(g.ax, False, -1, 0.18) graphs.append(g)
def mysql_throughput_graph(df: pd.DataFrame) -> Any: df = df[["system", "SQL statistics transactions", "General statistics total time"]] df["General statistics total time"] = df["General statistics total time"].apply( lambda x: float(x.replace("s", "")) ) df["mysql-throughput"] = ( df["SQL statistics transactions"] / df["General statistics total time"] ) df = apply_aliases(df) g = catplot( data=df, x=column_alias("system"), y=column_alias("mysql-throughput"), kind="bar", height=2.5, # aspect=1.2, color=color, palette=None, order=systems_order(df), ) apply_to_graphs(g.ax, False, -1, 0.285) return g
def nginx_graph(df: pd.DataFrame, metric: str) -> Any: plot_col = ["system"] thru_ylabel = None width = None if metric == "lat": plot_col.append("lat_avg(ms)") width = 0.25 elif metric == "thru": plot_col.append("req_sec_tot") width = 0.3 plot_df = df[plot_col] groups = len(set((list(plot_df["system"].values)))) plot_df = apply_aliases(plot_df) g = catplot(data=plot_df, x=plot_df.columns[0], y=plot_df.columns[1], kind="bar", order=systems_order(plot_df), height=2.5, legend=False, palette=None, color="black" # aspect=1.2, ) apply_to_graphs(g.ax, False, -1, width) if metric == "thru": thru_ylabel = g.ax.get_yticklabels() thru_ylabel = [str(int(int(x.get_text()))) for x in thru_ylabel] thru_ylabel[0] = "0" g.ax.set_yticklabels(thru_ylabel) return g
def syscalls_perf_graph(df: pd.DataFrame) -> Any: df2 = df[(df.data_size == 32) & (df.threads == 8)] df2 = df2.assign( time_per_syscall=10e6 * df2.total_time / (df2.packets_per_thread * df2.threads) ) g = catplot( data=apply_aliases(df2), x=column_alias("system"), y=column_alias("time_per_syscall"), order=systems_order(df2), kind="bar", height=2.5, # aspect=1.2, color=color, palette=None, ) # change_width(g.ax, 0.405) # g.ax.set_xlabel("") # g.ax.set_ylabel(g.ax.get_ylabel(), fontsize=8) # g.ax.set_xticklabels(g.ax.get_xmajorticklabels(), fontsize=8) # g.ax.set_yticklabels(g.ax.get_ymajorticklabels(), fontsize=8) # g.ax.grid(which="major") apply_to_graphs(g.ax, False, -1, 0.28) return g
def sqlite_graph(df: pd.DataFrame) -> Any: plot_df = df df = df[df.columns[2]] df = df.map(apply_sqlite_rows) plot_df.update(df) plot_df["sqlite-op-type"] = plot_df["sqlite-op-type"].map({ "5000 INSERTs into table with no index": "Insert", "5000 UPDATES of individual rows": "Update", "5000 DELETEs of individual rows": "Delete", }) groups = len(set((list(plot_df["system"].values)))) plot_df = apply_aliases(plot_df) g = catplot( data=plot_df, x=plot_df.columns[0], y=plot_df.columns[2], kind="bar", height=2.5, # aspect=0.8, order=systems_order(plot_df), hue="Operation", legend=False, palette=["darkgrey", "gray", "black"], ) apply_to_graphs(g.ax, True, 3, 0.285) g.ax.legend(frameon=False) return g
def smp_plot(dir: str, graphs: List[Any]) -> None: df = pd.read_csv(os.path.join(os.path.realpath(dir), "smp-latest.tsv"), sep="\t") df = pd.melt(df, id_vars=['cores', 'job'], value_vars=['read-bw', 'write-bw'], var_name="operation", value_name="disk-throughput") df = df.groupby(["cores", "operation"]).sum().reset_index() df["disk-throughput"] /= 1024 g = catplot( data=apply_aliases(df), x=column_alias("cores"), y=column_alias("disk-throughput"), hue=column_alias("operation"), kind="bar", height=2.5, legend=False, palette=["grey", "black"], ) # change_width(g.ax, 0.25) # # g.ax.set_xlabel('') # g.ax.set_xticklabels(g.ax.get_xmajorticklabels(), fontsize=6) # g.ax.set_yticklabels(g.ax.get_ymajorticklabels(), fontsize=6) # g.ax.legend(loc='best', fontsize='small') apply_to_graphs(g.ax, True, 2, 0.285) graphs.append(g)
def fio_read_write_graph(df: pd.DataFrame) -> Any: df = pd.melt( df, id_vars=["system", "job"], value_vars=["read-bw", "write-bw"], var_name="operation", value_name="disk-throughput", ) df = df.groupby(["system", "operation"]).sum().reset_index() df["disk-throughput"] /= 1024 g = catplot( data=apply_aliases(df), x=column_alias("system"), y=column_alias("disk-throughput"), hue=column_alias("operation"), order=systems_order(df), kind="bar", height=2.5, palette=palette, legend=False, # aspect=1.2, ) # change_width(g.ax, 0.405) # g.ax.set_xlabel("") # g.ax.legend(loc="center", bbox_to_anchor=(0.5, 1.05), ncol=2, frameon=False) apply_to_graphs(g.ax, True, 2, 0.285) # g.ax.grid(which="major") return g
def hdparm_graph(df: pd.DataFrame, metric: str) -> Any: plot_col = ["system"] if metric == "cached": plot_col.append("Timing buffer-cache reads") df["Timing buffer-cache reads"] = preprocess_hdparm( df["Timing buffer-cache reads"], ) elif metric == "buffered": plot_col.append("Timing buffered disk reads") df["Timing buffered disk reads"] = preprocess_hdparm( df["Timing buffered disk reads"], ) plot_df = df[plot_col] plot_df = apply_aliases(plot_df) g = catplot( data=plot_df, x=plot_df.columns[0], y=plot_df.columns[1], kind="bar", height=2.5, # aspect=1.2, color=color, palette=None, ) apply_to_graphs(g.ax, False, -1) return g
def network_bs_plot(dir: str, graphs: List[Any]) -> None: df = pd.read_csv(os.path.join(os.path.realpath(dir), "network-test-bs-latest.tsv"), sep="\t") df["network-bs-throughput"] = 1024 / df["time"] # df["batch_size"] = df["batch_size"].apply(lambda x: str(x)+"KiB") g = catplot( data=apply_aliases(df), x=column_alias("batch_size"), y=column_alias("network-bs-throughput"), kind="bar", height=2.5, legend=False, color="black", palette=None, ) # change_width(g.ax, 0.25) # # g.ax.set_xlabel('') # g.ax.set_xticklabels(g.ax.get_xmajorticklabels(), fontsize=6) # g.ax.set_yticklabels(g.ax.get_ymajorticklabels(), fontsize=6) apply_to_graphs(g.ax, False, -1) graphs.append(g)
def hdparm_zerocopy_plot(dir: str, graphs: List[Any]) -> None: df_all_on = pd.read_csv(os.path.join(os.path.realpath(dir), "hdparm-all-on-latest.tsv"), sep="\t") df_zcopy_off = pd.read_csv(os.path.join(os.path.realpath(dir), "hdparm-zerocopy-off-latest.tsv"), sep="\t") df_all_on = df_all_on.drop(columns=["system"]) df_zcopy_off = df_zcopy_off.drop(columns=["system"]) df_all_on["Timing buffered disk reads"] = preprocess_hdparm( df_all_on["Timing buffered disk reads"], ) df_zcopy_off["Timing buffered disk reads"] = preprocess_hdparm( df_zcopy_off["Timing buffered disk reads"], ) df_all_on["Timing buffer-cache reads"] = preprocess_hdparm( df_all_on["Timing buffer-cache reads"], ) df_zcopy_off["Timing buffer-cache reads"] = preprocess_hdparm( df_zcopy_off["Timing buffer-cache reads"], ) df_all_on = df_all_on.T.reset_index() df_zcopy_off = df_zcopy_off.T.reset_index() df_zcopy_off.columns = ["hdparm_kind", "hdparm-throughput"] df_all_on.columns = ["hdparm_kind", "hdparm-throughput"] df_all_on["feature_spdk"] = pd.Series(["spdk-zerocopy"] * len(df_all_on.index), index=df_all_on.index) df_zcopy_off["feature_spdk"] = pd.Series(["spdk-copy"] * len(df_zcopy_off.index), index=df_zcopy_off.index) plot_df = pd.concat([df_all_on, df_zcopy_off], axis=0) groups = len(set(list(plot_df["feature_spdk"].values))) g = catplot( data=apply_aliases(plot_df), x=column_alias("feature_spdk"), y=column_alias("hdparm-throughput"), kind="bar", height=2.5, legend=False, hue=column_alias("hdparm_kind"), palette=["grey", "black"], ) # apply_hatch(groups, g, True) # change_width(g.ax, 0.25) # g.ax.set_xlabel("") # g.ax.set_xticklabels(g.ax.get_xmajorticklabels(), fontsize=6) # g.ax.set_yticklabels(g.ax.get_ymajorticklabels(), fontsize=6) apply_to_graphs(g.ax, True, 2) graphs.append(g)
def memcpy_graph(df: pd.DataFrame) -> Any: g = catplot( data=apply_aliases(df), x=column_alias("memcpy-size"), y=column_alias("memcpy-time"), hue=column_alias("memcpy-kind"), kind="bar", height=2.5, aspect=1.2, ) return g
def mysql_latency_graph(df: pd.DataFrame) -> Any: groups = len(set((list(df["system"].values)))) g = catplot( data=apply_aliases(df), x=column_alias("system"), y=column_alias("Latency (ms) avg"), kind="bar", height=2.5, # aspect=1.2, color=color, palette=None, order=systems_order(df), ) apply_to_graphs(g.ax, False, -1, 0.285) return g
def spdk_zerocopy_plot(dir: str, graphs: List[Any]) -> None: df = pd.read_csv(os.path.join(os.path.realpath(dir), "spdk-zerocopy-latest.tsv"), sep="\t") df = df.assign(aesnithroughput=df.bytes / df.time / 1024 / 1024) g = catplot( data=apply_aliases(df), x=column_alias("type"), y=column_alias("aesnithroughput"), kind="bar", height=2.5, aspect=1.2, ) change_width(g.ax, 0.25) g.ax.set_xlabel('') graphs.append(g)
def aesni_plot(dir: str, graphs: List[Any]) -> None: df = pd.read_csv(os.path.join(os.path.realpath(dir), "aesni-latest.tsv"), sep="\t") df = df.assign(aesnithroughput=df.bytes / df.time / 1024 / 1024) g = catplot(data=apply_aliases(df), x=column_alias("type"), y=column_alias("aesnithroughput"), kind="bar", height=2.5, aspect=1.2, color="black", palette=None) apply_to_graphs(g.ax, False, -1, 0.1) g.ax.set_ylabel(g.ax.get_ylabel(), size=8) g.ax.set_xticklabels(g.ax.get_xticklabels(), size=8) g.ax.set_yticklabels(g.ax.get_yticklabels(), size=8) graphs.append(g)
def iperf_graph(df: pd.DataFrame) -> Any: df = df[df["direction"] == "send"] df["iperf-throughput"] = df["bytes"] / df["seconds"] * 8 / 1e9 g = catplot( data=apply_aliases(df), x=column_alias("system"), order=systems_order(df), y=column_alias("iperf-throughput"), kind="bar", height=2.5, # aspect=1.2, color=color, palette=None, ) # change_width(g.ax, 0.405) # g.ax.set_xlabel("") apply_to_graphs(g.ax, False, -1, 0.285) # g.ax.grid(which="major") return g
def storage_bs_plot(dir: str, graphs: List[Any]) -> None: df = pd.read_csv(os.path.join(os.path.realpath(dir), "simpleio-unenc.tsv"), sep="\t") df["storage-bs-throughput"] = (10 * 1024) / df["time"] g = catplot( data=apply_aliases(df), x=column_alias("batch-size"), y=column_alias("storage-bs-throughput"), kind="bar", height=2.5, legend=False, color="black", palette=None, ) # change_width(g.ax, 0.25) # # g.ax.set_xlabel('') # g.ax.set_xticklabels(g.ax.get_xmajorticklabels(), fontsize=6) # g.ax.set_yticklabels(g.ax.get_ymajorticklabels(), fontsize=6) apply_to_graphs(g.ax, False, -1) graphs.append(g)
def redis_graph(df: pd.DataFrame, metric: str) -> Any: df_flag = None hue = None col_name = None legend = False color = None palette = None n_cols = None thru_ylabel = None width = None if metric == "thru": df_flag = df["metric"] == "Throughput(ops/sec)" col_name = "Throughput(ops/sec)" width = 0.285 legend = False elif metric == "lat": df_flag = (df["metric"] == "AverageLatency(us)") & (df["operation"] != "[CLEANUP]") col_name = "AverageLatency(us)" hue = "operation" legend = True width = 0.285 plot_df = df[df_flag] groups = len(set((list(plot_df["system"].values)))) plot_df = plot_df.drop(["metric"], axis=1) plot_df = plot_df.rename(columns={"value": col_name}) plot_df = apply_aliases(plot_df) if hue is None: color = "black" palette = None else: palette = ["grey", "black"] n_cols = 2 g = catplot( data=plot_df, x=plot_df.columns[0], y=plot_df.columns[-1], hue=hue, kind="bar", height=2.5, order=systems_order(plot_df), # aspect=1.2, legend=False, palette=palette, color=color, ) apply_to_graphs(g.ax, legend, n_cols, width) g.ax.legend(ncol=2, loc="upper center", bbox_to_anchor=(0.5, 1.05), frameon=False) if metric == "thru": thru_ylabel = g.ax.get_yticklabels() thru_ylabel = [ str(float(float(x.get_text()) / 1000)) + "k" for x in thru_ylabel ] thru_ylabel[0] = "0" thru_ylabel = [x.replace(".0k", "k") for x in thru_ylabel] g.ax.set_yticklabels(thru_ylabel) return g