コード例 #1
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_paths(self, serializer, best_paths=False):
     config = serializer.read_config('config.yaml', path="stats")
     dim = config['num_links']
     kinematics = Kinematics(dim)
     if best_paths:
         paths = serializer.load_paths("best_paths.yaml", path="stats")
         filename = "best_paths.png"
     else:
         paths = serializer.load_paths("paths.yaml", path="stats")            
         filename = "paths.png"
     sets = []
     for path in paths:
         path_coords = []
         for elem in path:
             state = [elem[i] for i in xrange(dim)]
             path_coords.append(kinematics.get_end_effector_position(state))
         sets.append(np.array(path_coords))               
     Plot.plot_2d_n_sets(sets, 
                         xlabel='x', 
                         ylabel='y', 
                         x_range=[-3.5, 3.5], 
                         y_range=[-3.5, 3.5],
                         plot_type="lines",
                         show_legend=False,
                         save=self.save,
                         path="stats",
                         filename=filename)    
コード例 #2
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_average_dist_to_goal(self, serializer, cart_coords):
        config = serializer.read_config("config.yaml", path="stats")
        stats = serializer.load_stats('stats.yaml', path="stats")
        m_cov = stats['m_cov']
        data = []
        max_avg_distance = 0.0
        for k in xrange(len(m_cov)):
            dists = []
            for coords in cart_coords[k]:
                dists.append(
                    np.linalg.norm(
                        np.array(coords) - np.array(config['goal_position'])))
            avg_distance = 0.0
            for d in dists:
                avg_distance += d
            avg_distance /= len(dists)
            if avg_distance > max_avg_distance:
                max_avg_distance = avg_distance
            data.append(np.array([m_cov[k], avg_distance]))

        Plot.plot_2d_n_sets([np.array(data)],
                            xlabel="joint covariance",
                            ylabel="average distance to goal",
                            x_range=[m_cov[0], m_cov[-1]],
                            y_range=[0, max_avg_distance],
                            show_legend=False,
                            save=self.save,
                            filename="stats/avg_distance.png")
コード例 #3
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_average_dist_to_goal(self, serializer, cart_coords):
     config = serializer.read_config("config.yaml", path="stats")
     stats = serializer.load_stats('stats.yaml', path="stats")
     m_cov = stats['m_cov']
     data = []
     max_avg_distance = 0.0
     for k in xrange(len(m_cov)):            
         dists = []            
         for coords in cart_coords[k]:
             dists.append(np.linalg.norm(np.array(coords) - np.array(config['goal_position'])))            
         avg_distance = 0.0
         for d in dists:
             avg_distance += d
         avg_distance /= len(dists)
         if avg_distance > max_avg_distance:
             max_avg_distance = avg_distance                       
         data.append(np.array([m_cov[k], avg_distance]))
     
     Plot.plot_2d_n_sets([np.array(data)],
                         xlabel="joint covariance",
                         ylabel="average distance to goal",
                         x_range=[m_cov[0], m_cov[-1]],
                         y_range=[0, max_avg_distance],
                         show_legend=False,
                         save=self.save,
                         filename="stats/avg_distance.png")
コード例 #4
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_paths(self, serializer, best_paths=False):
     config = serializer.read_config('config.yaml', path="stats")
     dim = config['num_links']
     kinematics = Kinematics(dim)
     if best_paths:
         paths = serializer.load_paths("best_paths.yaml", path="stats")
         filename = "best_paths.png"
     else:
         paths = serializer.load_paths("paths.yaml", path="stats")
         filename = "paths.png"
     sets = []
     for path in paths:
         path_coords = []
         for elem in path:
             state = [elem[i] for i in xrange(dim)]
             path_coords.append(kinematics.get_end_effector_position(state))
         sets.append(np.array(path_coords))
     Plot.plot_2d_n_sets(sets,
                         xlabel='x',
                         ylabel='y',
                         x_range=[-3.5, 3.5],
                         y_range=[-3.5, 3.5],
                         plot_type="lines",
                         show_legend=False,
                         save=self.save,
                         path="stats",
                         filename=filename)
コード例 #5
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_mean_planning_times(self,
                                 serializer,
                                 dir="stats",
                                 filename="",
                                 output=""):
        if filename == "":
            filename = "mean_planning_times_per_step*.yaml"
        if output == "":
            output = "mean_planning_times_per_step.pdf"
        stats = serializer.load_stats('stats.yaml', path=dir)
        m_cov = stats['m_cov']
        sets = []
        labels = []
        mean_planning_times = []
        for file in glob.glob(os.path.join(os.path.join(dir, filename))):
            file_str = file
            try:

                file_str = file.split("/")[1].split(".")[0].split("_")[
                    5] + "_" + file.split("/")[1].split(".")[0].split("_")[6]
            except:
                pass

            #mean_rewards = serializer.load_stats('rewards.yaml', path="stats")
            mean_planning_times.append(serializer.load_stats(file))
            data = []
            for k in xrange(len(m_cov)):
                data.append(np.array([m_cov[k], mean_planning_times[-1][k]]))
            sets.append(np.array(data))
            labels.append(file_str)
        if not len(mean_planning_times) == 0:
            min_m = [min(m) for m in mean_planning_times]
            max_m = [max(m) for m in mean_planning_times]
            Plot.plot_2d_n_sets(sets,
                                labels=labels,
                                xlabel="joint covariance",
                                ylabel="mean planning times (seconds)",
                                x_range=[m_cov[0], m_cov[-1]],
                                y_range=[min(min_m),
                                         max(max_m) * 1.05],
                                show_legend=True,
                                save=self.save,
                                filename=dir + "/" + output)
コード例 #6
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_end_effector_paths(self, serializer, plot_scenery=False, plot_manipulator=False): 
     config = serializer.read_config('config.yaml', path="stats")       
     ee_paths = serializer.load("ee_paths.yaml", path="stats")
     state_paths = serializer.load("state_paths.yaml", path="stats")
     kinematics = Kinematics(config['num_links'])
     for file in glob.glob(os.path.join("stats", "ee_paths*.png")):
         os.remove(file)      
     for i in xrange(len(ee_paths)):
         sets = [np.array(ee_path) for ee_path in ee_paths[i]]                
         if plot_scenery:
             obstacles = serializer.load_obstacles(path="stats/obstacles")
             if not obstacles == None:
                 for obstacle in obstacles:
                     point1 = [obstacle[0] - obstacle[2] / 2.0, obstacle[1] - obstacle[3] / 2.0]
                     point2 = [obstacle[0] - obstacle[2] / 2.0, obstacle[1] + obstacle[3] / 2.0]
                     point3 = [obstacle[0] + obstacle[2] / 2.0, obstacle[1] + obstacle[3] / 2.0]
                     point4 = [obstacle[0] + obstacle[2] / 2.0, obstacle[1] - obstacle[3] / 2.0]
                     sets.append(np.array([point1, point2]))
                     sets.append(np.array([point2, point3]))
                     sets.append(np.array([point3, point4]))
                     sets.append(np.array([point4, point1]))
         if plot_manipulator:
             for j in xrange(len(state_paths[i])):
                 for k in xrange(len(state_paths[i][j])):                        
                     link_1_position = kinematics.get_link_n_position(state_paths[i][j][k], 1)
                     link_2_position = kinematics.get_link_n_position(state_paths[i][j][k], 2)
                     link_3_position = kinematics.get_link_n_position(state_paths[i][j][k], 3)
                     
                     sets.append(np.array([[0.0, 0.0], [link_1_position[0], link_1_position[1]]]))
                     sets.append(np.array([[link_1_position[0], link_1_position[1]], 
                                           [link_2_position[0], link_2_position[1]]]))
                     sets.append(np.array([[link_2_position[0], link_2_position[1]], 
                                           [link_3_position[0], link_3_position[1]]]))
         Plot.plot_2d_n_sets(sets,
                             xlabel="x",
                             ylabel="y",
                             x_range=[-3.5, 3.5], 
                             y_range=[-3.5, 3.5],
                             plot_type="lines",
                             show_legend=False,
                             save=self.save,
                             path="stats",
                             filename="ee_paths" + str(i) + ".png")
コード例 #7
0
ファイル: optim.py プロジェクト: hoergems/optim
 def __init__(self):
     waypoints = self.get_waypoints(25)
     obstacles = self.get_bad_points()
     print "Get K"
     K = self.K(waypoints) 
     print "Got K        "       
     f_prior, epsi, A = self.get_f_prior(waypoints, K)
     f_obst, obst_symb_vec = self.get_f_obst(waypoints)
     
     print "Got f"        
     trajectory = self.optimize(waypoints, obstacles, f_prior, f_obst, A, epsi, obst_symb_vec)
     print trajectory
     print obstacles
     plot_sets = [np.array(trajectory), np.array(obstacles)]
     
     
     plot_2d_n_sets(np.array(plot_sets),
                    x_range=[0.0, 15.0],
                    y_range=[0.0, 15.0],
                    plot_type="points")
コード例 #8
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_emd_graph(self, serializer, cartesian_coords):
     stats = serializer.load_stats('stats.yaml', path="stats") 
     config = serializer.read_config('config.yaml', path="stats")       
     #emd = stats['emd']
     m_cov = stats['m_cov']
     
     emds = []
     for k in xrange(len(cartesian_coords)):
         #cart_coords.append([cartesian_coords[i] for i in xrange(len(cartesian_coords))])                
         emds.append(calc_EMD(cartesian_coords[k], config['num_bins']))
     
     arr = np.array([np.array([m_cov[i], emds[i]]) for i in xrange(len(emds))])
     Plot.plot_2d_n_sets([arr], 
                         xlabel='joint covariance', 
                         ylabel='Wasserstein distance', 
                         x_range=[m_cov[0], m_cov[-1]], 
                         y_range=[0, max(emds)],
                         show_legend=False,
                         save=self.save,
                         path="stats",
                         filename="emd.png")        
コード例 #9
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_mean_rewards(self, serializer):
     stats = serializer.load_stats('stats.yaml', path="stats")
     m_cov = stats['m_cov']
     rewards = serializer.load_stats('rewards.yaml', path="stats")
     mean_rewards_data = []
     variance_data = []
     min_mean_reward = float("inf")
     max_mean_reward = -float("inf")
     min_variance = float("inf")
     max_variance = -float("inf")
     for k in xrange(len(m_cov)):
         n, min_max, mean, var, skew, kurt = scipy.stats.describe(
             np.array(rewards[k]))
         mean_rewards_data.append(np.array([m_cov[k], mean]))
         variance_data.append(np.array([m_cov[k], var]))
         if min_max[0] < min_mean_reward:
             min_mean_reward = min_max[0]
         if min_max[1] > max_mean_reward:
             max_mean_reward = min_max[1]
         if var > max_variance:
             max_variance = var
         if var < min_variance:
             min_variance = var
     Plot.plot_2d_n_sets(
         [np.array(mean_rewards_data)],
         xlabel="joint covariance",
         ylabel="mean reward",
         x_range=[m_cov[0], m_cov[-1]],
         y_range=[min_mean_reward - 0.1, max_mean_reward + 0.1],
         show_legend=False,
         save=self.save,
         filename="stats/mean_rewards.png")
     Plot.plot_2d_n_sets([np.array(variance_data)],
                         xlabel="joint covariance",
                         ylabel="reward variance",
                         x_range=[m_cov[0], m_cov[-1]],
                         y_range=[min_variance - 0.1, max_variance + 0.1],
                         show_legend=False,
                         save=self.save,
                         filename="stats/reward_variance.png")
コード例 #10
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_emd_graph(self, serializer, cartesian_coords):
        stats = serializer.load_stats('stats.yaml', path="stats")
        config = serializer.read_config('config.yaml', path="stats")
        #emd = stats['emd']
        m_cov = stats['m_cov']

        emds = []
        for k in xrange(len(cartesian_coords)):
            #cart_coords.append([cartesian_coords[i] for i in xrange(len(cartesian_coords))])
            emds.append(calc_EMD(cartesian_coords[k], config['num_bins']))

        arr = np.array(
            [np.array([m_cov[i], emds[i]]) for i in xrange(len(emds))])
        Plot.plot_2d_n_sets([arr],
                            xlabel='joint covariance',
                            ylabel='Wasserstein distance',
                            x_range=[m_cov[0], m_cov[-1]],
                            y_range=[0, max(emds)],
                            show_legend=False,
                            save=self.save,
                            path="stats",
                            filename="emd.png")
コード例 #11
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_mean_rewards(self, serializer):        
     stats = serializer.load_stats('stats.yaml', path="stats")
     m_cov = stats['m_cov']
     rewards = serializer.load_stats('rewards.yaml', path="stats")
     mean_rewards_data = []
     variance_data = []
     min_mean_reward = float("inf")
     max_mean_reward = -float("inf")
     min_variance = float("inf")
     max_variance = -float("inf")
     for k in xrange(len(m_cov)):            
         n, min_max, mean, var, skew, kurt = scipy.stats.describe(np.array(rewards[k]))       
         mean_rewards_data.append(np.array([m_cov[k], mean]))
         variance_data.append(np.array([m_cov[k], var]))
         if min_max[0] < min_mean_reward:
             min_mean_reward = min_max[0]
         if min_max[1] > max_mean_reward:
             max_mean_reward = min_max[1]            
         if var > max_variance:
             max_variance = var
         if var < min_variance:
             min_variance = var
     Plot.plot_2d_n_sets([np.array(mean_rewards_data)],
                         xlabel="joint covariance",
                         ylabel="mean reward",
                         x_range=[m_cov[0], m_cov[-1]],
                         y_range=[min_mean_reward - 0.1, max_mean_reward + 0.1],
                         show_legend=False,
                         save=self.save,
                         filename="stats/mean_rewards.png")
     Plot.plot_2d_n_sets([np.array(variance_data)],
                         xlabel="joint covariance",
                         ylabel="reward variance",
                         x_range=[m_cov[0], m_cov[-1]],
                         y_range=[min_variance - 0.1, max_variance + 0.1],
                         show_legend=False,
                         save=self.save,
                         filename="stats/reward_variance.png")
コード例 #12
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_mean_planning_times(self, serializer, dir="stats", filename="", output=""): 
     if filename == "":
         filename = "mean_planning_times_per_step*.yaml"
     if output == "":
         output = "mean_planning_times_per_step.pdf"       
     stats = serializer.load_stats('stats.yaml', path=dir)
     m_cov = stats['m_cov']
     sets = []
     labels = []
     mean_planning_times = []
     for file in glob.glob(os.path.join(os.path.join(dir, filename))):
         file_str = file
         try:
             
             file_str = file.split("/")[1].split(".")[0].split("_")[5] + "_" + file.split("/")[1].split(".")[0].split("_")[6]
         except:
             pass
                
         #mean_rewards = serializer.load_stats('rewards.yaml', path="stats")
         mean_planning_times.append(serializer.load_stats(file))            
         data = []
         for k in xrange(len(m_cov)):
             data.append(np.array([m_cov[k], mean_planning_times[-1][k]]))
         sets.append(np.array(data))            
         labels.append(file_str)        
     if not len(mean_planning_times) == 0:
         min_m = [min(m) for m in mean_planning_times]
         max_m = [max(m) for m in mean_planning_times]
         Plot.plot_2d_n_sets(sets,
                             labels=labels,
                             xlabel="joint covariance",
                             ylabel="mean planning times (seconds)",
                             x_range=[m_cov[0], m_cov[-1]],
                             y_range=[min(min_m), max(max_m) * 1.05],
                             show_legend=True,
                             save=self.save,
                             filename=dir + "/" + output)         
コード例 #13
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_end_effector_paths(self,
                                serializer,
                                plot_scenery=False,
                                plot_manipulator=False):
        config = serializer.read_config('config.yaml', path="stats")
        ee_paths = serializer.load("ee_paths.yaml", path="stats")
        state_paths = serializer.load("state_paths.yaml", path="stats")
        kinematics = Kinematics(config['num_links'])
        for file in glob.glob(os.path.join("stats", "ee_paths*.png")):
            os.remove(file)
        for i in xrange(len(ee_paths)):
            sets = [np.array(ee_path) for ee_path in ee_paths[i]]
            if plot_scenery:
                obstacles = serializer.load_obstacles(path="stats/obstacles")
                if not obstacles == None:
                    for obstacle in obstacles:
                        point1 = [
                            obstacle[0] - obstacle[2] / 2.0,
                            obstacle[1] - obstacle[3] / 2.0
                        ]
                        point2 = [
                            obstacle[0] - obstacle[2] / 2.0,
                            obstacle[1] + obstacle[3] / 2.0
                        ]
                        point3 = [
                            obstacle[0] + obstacle[2] / 2.0,
                            obstacle[1] + obstacle[3] / 2.0
                        ]
                        point4 = [
                            obstacle[0] + obstacle[2] / 2.0,
                            obstacle[1] - obstacle[3] / 2.0
                        ]
                        sets.append(np.array([point1, point2]))
                        sets.append(np.array([point2, point3]))
                        sets.append(np.array([point3, point4]))
                        sets.append(np.array([point4, point1]))
            if plot_manipulator:
                for j in xrange(len(state_paths[i])):
                    for k in xrange(len(state_paths[i][j])):
                        link_1_position = kinematics.get_link_n_position(
                            state_paths[i][j][k], 1)
                        link_2_position = kinematics.get_link_n_position(
                            state_paths[i][j][k], 2)
                        link_3_position = kinematics.get_link_n_position(
                            state_paths[i][j][k], 3)

                        sets.append(
                            np.array([[0.0, 0.0],
                                      [link_1_position[0],
                                       link_1_position[1]]]))
                        sets.append(
                            np.array([[link_1_position[0], link_1_position[1]],
                                      [link_2_position[0],
                                       link_2_position[1]]]))
                        sets.append(
                            np.array([[link_2_position[0], link_2_position[1]],
                                      [link_3_position[0],
                                       link_3_position[1]]]))
            Plot.plot_2d_n_sets(sets,
                                xlabel="x",
                                ylabel="y",
                                x_range=[-3.5, 3.5],
                                y_range=[-3.5, 3.5],
                                plot_type="lines",
                                show_legend=False,
                                save=self.save,
                                path="stats",
                                filename="ee_paths" + str(i) + ".png")
コード例 #14
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_particles(self, serializer, particle_limit=0):
        config = serializer.read_config('config.yaml', path="stats")
        for file in glob.glob(os.path.join("stats", "particles*.png")):
            os.remove(file)
        if config['plot_particles']:
            particles = serializer.load("particles.yaml", path="stats")
        state_paths = serializer.load("state_paths.yaml", path="stats")

        map_size = sum(
            [link_dimension[0] for link_dimension in self.link_dimensions])
        axis = v2_int()
        ax1 = v_int()
        ax2 = v_int()
        ax1[:] = [0, 0, 1]
        if config['workspace_dimensions'] == 2:
            ax2[:] = [0, 0, 1]
        elif config['workspace_dimensions'] == 3:
            ax2[:] = [0, 1, 0]

        axis[:] = [ax1, ax2, ax1]
        kinematics = Kinematics()
        kinematics.setLinksAndAxis(self.link_dimensions, axis)
        obstacles = serializer.load_obstacles(path="stats/obstacles")
        environment = serializer.load_environment()

        for file in glob.glob(os.path.join("stats", "particles*.png")):
            os.remove(file)

        sets = []
        color_map = []
        for obstacle in environment:
            point1 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point2 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point3 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point4 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point5 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point6 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point7 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point8 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            if config['workspace_dimensions'] == 2:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))
                color_map.extend(['#000000' for t in xrange(4)])
            elif config['workspace_dimensions'] == 3:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))

                sets.append(np.array([point2, point4]))
                sets.append(np.array([point4, point8]))
                sets.append(np.array([point8, point6]))
                sets.append(np.array([point6, point2]))

                sets.append(np.array([point1, point2]))
                sets.append(np.array([point3, point4]))
                sets.append(np.array([point7, point8]))
                sets.append(np.array([point5, point6]))
                color_map.extend(['#000000' for t in xrange(12)])
        balls = [[config['goal_position'], config["goal_radius"]]]
        color_map.extend(['green' for i in xrange(len(balls))])
        for i in xrange(len(state_paths)):
            for j in xrange(len(state_paths[i])):
                for k in xrange(len(state_paths[i][j])):
                    temp_sets = []
                    color_map_temp = []
                    if config['plot_particles'] and not k == 0:
                        for l in xrange(len(particles[i][j][k - 1])):
                            if not particle_limit == 0:
                                if l > particle_limit + 1:
                                    continue
                            angles = v_double()
                            angles[:] = particles[i][j][k - 1][l]
                            link_1_position = kinematics.getPositionOfLinkN(
                                angles, 1)
                            link_2_position = kinematics.getPositionOfLinkN(
                                angles, 2)
                            link_3_position = kinematics.getPositionOfLinkN(
                                angles, 3)
                            temp_sets.append(
                                np.array([[0.0, 0.0, 0.0],
                                          [
                                              link_1_position[0],
                                              link_1_position[1],
                                              link_1_position[2]
                                          ]]))
                            temp_sets.append(
                                np.array([[
                                    link_1_position[0], link_1_position[1],
                                    link_1_position[2]
                                ],
                                          [
                                              link_2_position[0],
                                              link_2_position[1],
                                              link_2_position[2]
                                          ]]))
                            temp_sets.append(
                                np.array([[
                                    link_2_position[0], link_2_position[1],
                                    link_2_position[2]
                                ],
                                          [
                                              link_3_position[0],
                                              link_3_position[1],
                                              link_3_position[2]
                                          ]]))
                            color_map_temp.extend(
                                ['#aaabbb' for t in xrange(3)])
                        angles = v_double()
                        angles[:] = state_paths[i][j][k]
                        link_1_position = kinematics.getPositionOfLinkN(
                            angles, 1)
                        link_2_position = kinematics.getPositionOfLinkN(
                            angles, 2)
                        link_3_position = kinematics.getPositionOfLinkN(
                            angles, 3)

                        temp_sets.append(
                            np.array([[0.0, 0.0, 0.0],
                                      [
                                          link_1_position[0],
                                          link_1_position[1],
                                          link_1_position[2]
                                      ]]))
                        temp_sets.append(
                            np.array([[
                                link_1_position[0], link_1_position[1],
                                link_1_position[2]
                            ],
                                      [
                                          link_2_position[0],
                                          link_2_position[1],
                                          link_2_position[2]
                                      ]]))
                        temp_sets.append(
                            np.array([[
                                link_2_position[0], link_2_position[1],
                                link_2_position[2]
                            ],
                                      [
                                          link_3_position[0],
                                          link_3_position[1],
                                          link_3_position[2]
                                      ]]))
                        color_map_temp.extend(['#0000ff' for t in xrange(3)])
                        """
                        Plot the goal area
                        """

                        temp_sets.extend(sets)
                        color_map_temp.extend(color_map)
                        if config['workspace_dimensions'] == 2:
                            circles = []
                            for ball in balls:
                                circles.append(
                                    [ball[0][0], ball[0][1], ball[1]])
                            Plot.plot_2d_n_sets(
                                temp_sets,
                                circles=circles,
                                xlabel="x",
                                ylabel="y",
                                x_range=[-map_size * 1.1, map_size * 1.1],
                                y_range=[-map_size * 1.1, map_size * 1.1],
                                plot_type="lines",
                                show_legend=False,
                                color_map=color_map_temp,
                                save=self.save,
                                path="stats",
                                filename="particles" + str(i) + "_" + str(j) +
                                "_" + str(k) + ".png")
                        elif config['workspace_dimensions'] == 3:
                            Plot.plot_3d_n_sets(sets=temp_sets,
                                                balls=balls,
                                                colormap=color_map_temp,
                                                show_legend=False,
                                                save=self.save,
                                                path="stats",
                                                filename="particles" + str(i) +
                                                "_" + str(j) + "_" + str(k) +
                                                ".png")
コード例 #15
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def create_video(self, serializer, dir='stats'):
        try:
            os.makedirs(dir + "/mov")
        except Exception as e:
            print e
        config = serializer.read_config("config.yaml", path=dir)
        utils = Utils()

        map_size = sum(
            [link_dimension[0] for link_dimension in self.link_dimensions])
        environment = serializer.load_environment(path=dir + "/environment")
        sets = []
        color_map = []
        plot_particles = True
        for obstacle in environment:
            point1 = [
                obstacle[0][0] - obstacle[1][0],
                obstacle[0][1] - obstacle[1][1],
                obstacle[0][2] - obstacle[1][2]
            ]
            point2 = [
                obstacle[0][0] - obstacle[1][0],
                obstacle[0][1] - obstacle[1][1],
                obstacle[0][2] + obstacle[1][2]
            ]
            point3 = [
                obstacle[0][0] - obstacle[1][0],
                obstacle[0][1] + obstacle[1][1],
                obstacle[0][2] - obstacle[1][2]
            ]
            point4 = [
                obstacle[0][0] - obstacle[1][0],
                obstacle[0][1] + obstacle[1][1],
                obstacle[0][2] + obstacle[1][2]
            ]
            point5 = [
                obstacle[0][0] + obstacle[1][0],
                obstacle[0][1] - obstacle[1][1],
                obstacle[0][2] - obstacle[1][2]
            ]
            point6 = [
                obstacle[0][0] + obstacle[1][0],
                obstacle[0][1] - obstacle[1][1],
                obstacle[0][2] + obstacle[1][2]
            ]
            point7 = [
                obstacle[0][0] + obstacle[1][0],
                obstacle[0][1] + obstacle[1][1],
                obstacle[0][2] - obstacle[1][2]
            ]
            point8 = [
                obstacle[0][0] + obstacle[1][0],
                obstacle[0][1] + obstacle[1][1],
                obstacle[0][2] + obstacle[1][2]
            ]
            if config['workspace_dimensions'] == 2:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))
                color_map.extend(['#000000' for t in xrange(4)])
            elif config['workspace_dimensions'] == 3:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))

                sets.append(np.array([point2, point4]))
                sets.append(np.array([point4, point8]))
                sets.append(np.array([point8, point6]))
                sets.append(np.array([point6, point2]))

                sets.append(np.array([point1, point2]))
                sets.append(np.array([point3, point4]))
                sets.append(np.array([point7, point8]))
                sets.append(np.array([point5, point6]))
                color_map.extend(['#000000' for t in xrange(12)])
        balls = [[config['goal_position'], config["goal_radius"]]]
        color_map.extend(['green' for i in xrange(len(balls))])
        state = None
        particles_begin = False
        s_first = False
        particles = []
        cov_num = -1
        for process_covariance in self.process_covariances:
            for file in glob.glob(dir + "/*.log"):
                if str(process_covariance) in file:
                    cov_num += 1
                    run_num = -1
                    step_num = -1
                    with open(file, 'r') as f:
                        for line in f:
                            if "RUN #" in line or "Run #" in line:
                                run_num += 1
                                step_num = -1
                            elif "S_ESTIMATED:" in line:
                                line_arr = line.split(":")[1].strip().split(
                                    " ")
                                estimated_state = [
                                    float(line_arr[j])
                                    for j in xrange(len(line_arr))
                                ]
                            elif "PARTICLES BEGIN" in line:
                                particles_begin = True
                                particles = []
                            elif "p:" in line and particles_begin and not "step" in line:
                                if len(particles
                                       ) < config['particle_plot_limit']:
                                    particle = line.split(
                                        ":")[1].strip().split(" ")
                                    particle = [float(p) for p in particle]
                                    particles.append(particle)
                            elif "PARTICLES END" in line:
                                particles_begin = False

                            elif "S:" in line:
                                line_arr = line.split(":")[1].strip().split(
                                    " ")
                                state = [
                                    float(line_arr[j])
                                    for j in xrange(len(line_arr) / 2)
                                ]
                                if not len(particles) == 0:
                                    temp_sets = []
                                    color_map_temp = []
                                    step_num += 1
                                    if plot_particles:
                                        for particle in particles:
                                            angles = v_double()
                                            angles[:] = particle
                                            link_1_position = self.kinematics.getPositionOfLinkN(
                                                angles, 1)
                                            link_2_position = self.kinematics.getPositionOfLinkN(
                                                angles, 2)
                                            link_3_position = self.kinematics.getPositionOfLinkN(
                                                angles, 3)
                                            temp_sets.append(
                                                np.array(
                                                    [[0.0, 0.0, 0.0],
                                                     [
                                                         link_1_position[0],
                                                         link_1_position[1],
                                                         link_1_position[2]
                                                     ]]))
                                            temp_sets.append(
                                                np.array(
                                                    [[
                                                        link_1_position[0],
                                                        link_1_position[1],
                                                        link_1_position[2]
                                                    ],
                                                     [
                                                         link_2_position[0],
                                                         link_2_position[1],
                                                         link_2_position[2]
                                                     ]]))
                                            temp_sets.append(
                                                np.array(
                                                    [[
                                                        link_2_position[0],
                                                        link_2_position[1],
                                                        link_2_position[2]
                                                    ],
                                                     [
                                                         link_3_position[0],
                                                         link_3_position[1],
                                                         link_3_position[2]
                                                     ]]))
                                            color_map_temp.extend(
                                                ['#aaabbb' for t in xrange(3)])
                                    angles = v_double()
                                    angles[:] = state
                                    img_filename = "img_" + str(
                                        cov_num) + "_" + str(
                                            run_num) + "_" + "0000"
                                    if step_num < 10:
                                        img_filename += "0"
                                    img_filename += str(step_num) + ".png"
                                    #img_filename = "img_" + str(cov_num) + "_" + str(run_num) + "_" + "0000" + str(step_num) + ".png"
                                    link_1_position = self.kinematics.getPositionOfLinkN(
                                        angles, 1)
                                    link_2_position = self.kinematics.getPositionOfLinkN(
                                        angles, 2)
                                    link_3_position = self.kinematics.getPositionOfLinkN(
                                        angles, 3)
                                    temp_sets.append(
                                        np.array([[0.0, 0.0, 0.0],
                                                  [
                                                      link_1_position[0],
                                                      link_1_position[1],
                                                      link_1_position[2]
                                                  ]]))
                                    temp_sets.append(
                                        np.array([[
                                            link_1_position[0],
                                            link_1_position[1],
                                            link_1_position[2]
                                        ],
                                                  [
                                                      link_2_position[0],
                                                      link_2_position[1],
                                                      link_2_position[2]
                                                  ]]))
                                    temp_sets.append(
                                        np.array([[
                                            link_2_position[0],
                                            link_2_position[1],
                                            link_2_position[2]
                                        ],
                                                  [
                                                      link_3_position[0],
                                                      link_3_position[1],
                                                      link_3_position[2]
                                                  ]]))
                                    color_map_temp.extend(
                                        ['#0000ff' for n in xrange(3)])
                                    '''angles = v_double()
                                    
                                    angles[:] = estimated_state
                                    link_1_position = self.kinematics.getPositionOfLinkN(angles, 1)
                                    link_2_position = self.kinematics.getPositionOfLinkN(angles, 2)
                                    link_3_position = self.kinematics.getPositionOfLinkN(angles, 3)
                                    temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                                    temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                                              [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                                    temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                                              [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                                    color_map_temp.extend(['#ff0000' for n in xrange(3)])'''
                                    temp_sets.extend(sets)
                                    color_map_temp.extend(color_map)

                                    if config['workspace_dimensions'] == 2:
                                        circles = []
                                        for ball in balls:
                                            circles.append([
                                                ball[0][0], ball[0][1], ball[1]
                                            ])
                                        Plot.plot_2d_n_sets(
                                            temp_sets,
                                            circles=circles,
                                            xlabel="x",
                                            ylabel="y",
                                            x_range=[
                                                -map_size * 1.1, map_size * 1.1
                                            ],
                                            y_range=[
                                                -map_size * 1.1, map_size * 1.1
                                            ],
                                            plot_type="lines",
                                            show_legend=False,
                                            color_map=color_map_temp,
                                            save=self.save,
                                            path=dir + "/mov",
                                            filename=img_filename)
        sleep
コード例 #16
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
    def plot_state_path(self, serializer, state_path):
        config = serializer.read_config('config.yaml', path="stats")
        print "current dir " + os.getcwd()
        kinematics = Kinematics()
        kinematics.setLinksAndAxis(self.link_dimensions, axis)
        kinematics = Kinematics(config['num_links'],
                                config['workspace_dimensions'])
        obstacles = serializer.load_obstacles(path="stats/obstacles")
        environment = serializer.load_environment()
        for file in glob.glob(os.path.join("stats", "state_paths*.png")):
            os.remove(file)
        sets = []
        color_map = []
        for obstacle in environment:
            point1 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point2 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point3 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point4 = [
                obstacle[0][0] - obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point5 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point6 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] - obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            point7 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] - obstacle[1][2] / 2.0
            ]
            point8 = [
                obstacle[0][0] + obstacle[1][0] / 2.0,
                obstacle[0][1] + obstacle[1][1] / 2.0,
                obstacle[0][2] + obstacle[1][2] / 2.0
            ]
            if config['workspace_dimensions'] == 2:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))
                color_map.extend(['#000000' for t in xrange(4)])
            elif config['workspace_dimensions'] == 3:
                sets.append(np.array([point1, point3]))
                sets.append(np.array([point3, point7]))
                sets.append(np.array([point7, point5]))
                sets.append(np.array([point5, point1]))

                sets.append(np.array([point2, point4]))
                sets.append(np.array([point4, point8]))
                sets.append(np.array([point8, point6]))
                sets.append(np.array([point6, point2]))

                sets.append(np.array([point1, point2]))
                sets.append(np.array([point3, point4]))
                sets.append(np.array([point7, point8]))
                sets.append(np.array([point5, point6]))
                color_map.extend(['#000000' for t in xrange(12)])
        balls = [[config['goal_position'], config["goal_radius"]]]
        color_map.extend(['green' for i in xrange(len(balls))])
        for i in xrange(len(state_path)):
            temp_sets = []
            color_map_temp = []
            link_1_position = kinematics.get_link_n_position(state_path[i], 0)
            link_2_position = kinematics.get_link_n_position(state_path[i], 1)
            link_3_position = kinematics.get_link_n_position(state_path[i], 2)

            temp_sets.append(
                np.array([[0.0, 0.0], [link_1_position[0],
                                       link_1_position[1]]]))
            temp_sets.append(
                np.array([[link_1_position[0], link_1_position[1]],
                          [link_2_position[0], link_2_position[1]]]))
            temp_sets.append(
                np.array([[link_2_position[0], link_2_position[1]],
                          [link_3_position[0], link_3_position[1]]]))
            color_map_temp.extend(['#0000ff' for t in xrange(3)])
            temp_sets.extend(sets)
            color_map_temp.extend(color_map)

            if config['workspace_dimensions'] == 2:
                circles = []
                for ball in balls:
                    circles.append([ball[0][0], ball[0][1], ball[1]])
                Plot.plot_2d_n_sets(temp_sets,
                                    circles=circles,
                                    xlabel="x",
                                    ylabel="y",
                                    x_range=[-3.5, 3.5],
                                    y_range=[-3.5, 3.5],
                                    plot_type="lines",
                                    show_legend=False,
                                    color_map=color_map_temp,
                                    save=self.save,
                                    path="stats",
                                    filename="state_path" + str(i) + ".png")
コード例 #17
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_state_path(self, serializer, state_path):
     config = serializer.read_config('config.yaml', path="stats")
     print "current dir " + os.getcwd()
     kinematics = Kinematics()
     kinematics.setLinksAndAxis(self.link_dimensions, axis)
     kinematics = Kinematics(config['num_links'], config['workspace_dimensions'])
     obstacles = serializer.load_obstacles(path="stats/obstacles")
     environment = serializer.load_environment() 
     for file in glob.glob(os.path.join("stats", "state_paths*.png")):
         os.remove(file)  
     sets = []
     color_map = []
     for obstacle in environment:
         point1 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point2 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point3 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point4 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point5 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point6 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point7 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point8 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         if config['workspace_dimensions'] == 2:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
             color_map.extend(['#000000' for t in xrange(4)])
         elif config['workspace_dimensions'] == 3:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
                             
             sets.append(np.array([point2, point4]))
             sets.append(np.array([point4, point8]))
             sets.append(np.array([point8, point6]))
             sets.append(np.array([point6, point2]))
                             
             sets.append(np.array([point1, point2]))
             sets.append(np.array([point3, point4]))
             sets.append(np.array([point7, point8]))
             sets.append(np.array([point5, point6]))
             color_map.extend(['#000000' for t in xrange(12)])
     balls = [[config['goal_position'], config["goal_radius"]]]
     color_map.extend(['green' for i in xrange(len(balls))])    
     for i in xrange(len(state_path)): 
         temp_sets = []
         color_map_temp = []                                              
         link_1_position = kinematics.get_link_n_position(state_path[i], 0)
         link_2_position = kinematics.get_link_n_position(state_path[i], 1)
         link_3_position = kinematics.get_link_n_position(state_path[i], 2)
                     
         temp_sets.append(np.array([[0.0, 0.0], [link_1_position[0], link_1_position[1]]]))
         temp_sets.append(np.array([[link_1_position[0], link_1_position[1]], 
                                    [link_2_position[0], link_2_position[1]]]))
         temp_sets.append(np.array([[link_2_position[0], link_2_position[1]], 
                                    [link_3_position[0], link_3_position[1]]]))
         color_map_temp.extend(['#0000ff' for t in xrange(3)])
         temp_sets.extend(sets)
         color_map_temp.extend(color_map) 
         
         if config['workspace_dimensions'] == 2:
             circles = []
             for ball in balls:
                 circles.append([ball[0][0], ball[0][1], ball[1]])
             Plot.plot_2d_n_sets(temp_sets,
                                 circles=circles,
                                 xlabel="x",
                                 ylabel="y",
                                 x_range=[-3.5, 3.5], 
                                 y_range=[-3.5, 3.5],
                                 plot_type="lines",
                                 show_legend=False,
                                 color_map=color_map_temp,
                                 save=self.save,
                                 path="stats",
                                 filename="state_path" + str(i) + ".png")
コード例 #18
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def create_video(self, serializer, dir='stats'):
     try:
         os.makedirs(dir + "/mov")
     except Exception as e:
         print e
     config = serializer.read_config("config.yaml", path=dir)
     utils = Utils()        
     
     map_size = sum([link_dimension[0] for link_dimension in self.link_dimensions])
     environment = serializer.load_environment(path=dir + "/environment")        
     sets = []
     color_map = []
     plot_particles = True
     for obstacle in environment:
         point1 = [obstacle[0][0] - obstacle[1][0], obstacle[0][1] - obstacle[1][1], obstacle[0][2] - obstacle[1][2]]
         point2 = [obstacle[0][0] - obstacle[1][0], obstacle[0][1] - obstacle[1][1], obstacle[0][2] + obstacle[1][2]]
         point3 = [obstacle[0][0] - obstacle[1][0], obstacle[0][1] + obstacle[1][1], obstacle[0][2] - obstacle[1][2]]
         point4 = [obstacle[0][0] - obstacle[1][0], obstacle[0][1] + obstacle[1][1], obstacle[0][2] + obstacle[1][2]]
         point5 = [obstacle[0][0] + obstacle[1][0], obstacle[0][1] - obstacle[1][1], obstacle[0][2] - obstacle[1][2]]
         point6 = [obstacle[0][0] + obstacle[1][0], obstacle[0][1] - obstacle[1][1], obstacle[0][2] + obstacle[1][2]]
         point7 = [obstacle[0][0] + obstacle[1][0], obstacle[0][1] + obstacle[1][1], obstacle[0][2] - obstacle[1][2]]
         point8 = [obstacle[0][0] + obstacle[1][0], obstacle[0][1] + obstacle[1][1], obstacle[0][2] + obstacle[1][2]]
         if config['workspace_dimensions'] == 2:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
             color_map.extend(['#000000' for t in xrange(4)])
         elif config['workspace_dimensions'] == 3:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
                             
             sets.append(np.array([point2, point4]))
             sets.append(np.array([point4, point8]))
             sets.append(np.array([point8, point6]))
             sets.append(np.array([point6, point2]))
                             
             sets.append(np.array([point1, point2]))
             sets.append(np.array([point3, point4]))
             sets.append(np.array([point7, point8]))
             sets.append(np.array([point5, point6]))
             color_map.extend(['#000000' for t in xrange(12)])
     balls = [[config['goal_position'], config["goal_radius"]]]
     color_map.extend(['green' for i in xrange(len(balls))])
     state = None
     particles_begin = False
     s_first = False
     particles = []
     cov_num  = -1
     for process_covariance in self.process_covariances:
         for file in glob.glob(dir + "/*.log"):                
             if str(process_covariance) in file:                    
                 cov_num += 1                   
                 run_num = -1
                 step_num = -1
                 with open(file, 'r') as f:                        
                     for line in f:                                                       
                         if "RUN #" in line or "Run #" in line:                                
                             run_num += 1
                             step_num = -1
                         elif "S_ESTIMATED:" in line:
                             line_arr = line.split(":")[1].strip().split(" ")
                             estimated_state = [float(line_arr[j]) for j in xrange(len(line_arr))]                           
                         elif "PARTICLES BEGIN" in line:
                             particles_begin = True
                             particles = []
                         elif "p:" in line and particles_begin and not "step" in line:
                             if len(particles) < config['particle_plot_limit']:
                                 particle = line.split(":")[1].strip().split(" ")
                                 particle = [float(p) for p in particle]
                                 particles.append(particle)
                         elif "PARTICLES END" in line:
                             particles_begin = False
                             
                         elif "S:" in line:
                             line_arr = line.split(":")[1].strip().split(" ")
                             state = [float(line_arr[j]) for j in xrange(len(line_arr) / 2)]
                             if not len(particles) == 0:
                                 temp_sets = []
                                 color_map_temp = []
                                 step_num += 1  
                                 if plot_particles:                                                                     
                                     for particle in particles:
                                         angles = v_double()
                                         angles[:] = particle
                                         link_1_position = self.kinematics.getPositionOfLinkN(angles, 1)
                                         link_2_position = self.kinematics.getPositionOfLinkN(angles, 2)
                                         link_3_position = self.kinematics.getPositionOfLinkN(angles, 3)
                                         temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                                         temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                                                    [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                                         temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                                                    [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                                         color_map_temp.extend(['#aaabbb' for t in xrange(3)])                                                              
                                 angles = v_double()
                                 angles[:] = state   
                                 img_filename = "img_" + str(cov_num) + "_" + str(run_num) + "_" + "0000"
                                 if step_num < 10:
                                     img_filename += "0"
                                 img_filename += str(step_num) + ".png"                                 
                                 #img_filename = "img_" + str(cov_num) + "_" + str(run_num) + "_" + "0000" + str(step_num) + ".png"
                                 link_1_position = self.kinematics.getPositionOfLinkN(angles, 1)
                                 link_2_position = self.kinematics.getPositionOfLinkN(angles, 2)
                                 link_3_position = self.kinematics.getPositionOfLinkN(angles, 3)
                                 temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                                 temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                                           [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                                 temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                                           [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                                 color_map_temp.extend(['#0000ff' for n in xrange(3)])                                
                                 
                                 '''angles = v_double()
                                 
                                 angles[:] = estimated_state
                                 link_1_position = self.kinematics.getPositionOfLinkN(angles, 1)
                                 link_2_position = self.kinematics.getPositionOfLinkN(angles, 2)
                                 link_3_position = self.kinematics.getPositionOfLinkN(angles, 3)
                                 temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                                 temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                                           [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                                 temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                                           [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                                 color_map_temp.extend(['#ff0000' for n in xrange(3)])'''
                                 temp_sets.extend(sets)
                                 color_map_temp.extend(color_map)        
                                                           
                                 if config['workspace_dimensions'] == 2:
                                     circles = []
                                     for ball in balls:
                                         circles.append([ball[0][0], ball[0][1], ball[1]])
                                     Plot.plot_2d_n_sets(temp_sets,
                                                         circles=circles,
                                                         xlabel="x",
                                                         ylabel="y",
                                                         x_range=[-map_size * 1.1, map_size * 1.1], 
                                                         y_range=[-map_size * 1.1, map_size * 1.1],
                                                         plot_type="lines",
                                                         show_legend=False,
                                                         color_map=color_map_temp,
                                                         save=self.save,
                                                         path=dir + "/mov",
                                                         filename=img_filename)
     sleep
コード例 #19
0
ファイル: plot_stats.py プロジェクト: hoergems/abt_newt
 def plot_particles(self, serializer, particle_limit=0):
     config = serializer.read_config('config.yaml', path="stats")
     for file in glob.glob(os.path.join("stats", "particles*.png")):
         os.remove(file)
     if config['plot_particles']:
         particles = serializer.load("particles.yaml", path="stats")
     state_paths = serializer.load("state_paths.yaml", path="stats")        
     
     map_size = sum([link_dimension[0] for link_dimension in self.link_dimensions])
     axis = v2_int()
     ax1 = v_int()
     ax2 = v_int()
     ax1[:] = [0, 0, 1]
     if config['workspace_dimensions'] == 2:
         ax2[:] = [0, 0, 1]            
     elif config['workspace_dimensions'] == 3:
         ax2[:] = [0, 1, 0]
         
     axis[:] = [ax1, ax2, ax1] 
     kinematics = Kinematics()
     kinematics.setLinksAndAxis(self.link_dimensions, axis)
     obstacles = serializer.load_obstacles(path="stats/obstacles")
     environment = serializer.load_environment()        
         
     for file in glob.glob(os.path.join("stats", "particles*.png")):
         os.remove(file)
             
     sets = [] 
     color_map = []
     for obstacle in environment:
         point1 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point2 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point3 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point4 = [obstacle[0][0] - obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point5 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point6 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] - obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         point7 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] - obstacle[1][2] / 2.0]
         point8 = [obstacle[0][0] + obstacle[1][0] / 2.0, obstacle[0][1] + obstacle[1][1] / 2.0, obstacle[0][2] + obstacle[1][2] / 2.0]
         if config['workspace_dimensions'] == 2:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
             color_map.extend(['#000000' for t in xrange(4)])
         elif config['workspace_dimensions'] == 3:
             sets.append(np.array([point1, point3]))
             sets.append(np.array([point3, point7]))
             sets.append(np.array([point7, point5]))
             sets.append(np.array([point5, point1]))
                             
             sets.append(np.array([point2, point4]))
             sets.append(np.array([point4, point8]))
             sets.append(np.array([point8, point6]))
             sets.append(np.array([point6, point2]))
                             
             sets.append(np.array([point1, point2]))
             sets.append(np.array([point3, point4]))
             sets.append(np.array([point7, point8]))
             sets.append(np.array([point5, point6]))
             color_map.extend(['#000000' for t in xrange(12)])
     balls = [[config['goal_position'], config["goal_radius"]]]
     color_map.extend(['green' for i in xrange(len(balls))])       
     for i in xrange(len(state_paths)):
         for j in xrange(len(state_paths[i])):                
             for k in xrange(len(state_paths[i][j])):
                 temp_sets = []
                 color_map_temp = []
                 if config['plot_particles'] and not k == 0:
                     for l in xrange(len(particles[i][j][k - 1])):
                         if not particle_limit == 0:
                             if l > particle_limit + 1:
                                 continue
                         angles = v_double();
                         angles[:] = particles[i][j][k - 1][l]
                         link_1_position = kinematics.getPositionOfLinkN(angles, 1)
                         link_2_position = kinematics.getPositionOfLinkN(angles, 2)
                         link_3_position = kinematics.getPositionOfLinkN(angles, 3)
                         temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                         temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                                   [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                         temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                                   [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                         color_map_temp.extend(['#aaabbb' for t in xrange(3)])                                                        
                     angles = v_double();
                     angles[:] = state_paths[i][j][k]   
                     link_1_position = kinematics.getPositionOfLinkN(angles, 1)
                     link_2_position = kinematics.getPositionOfLinkN(angles, 2)
                     link_3_position = kinematics.getPositionOfLinkN(angles, 3)
                         
                     temp_sets.append(np.array([[0.0, 0.0, 0.0], [link_1_position[0], link_1_position[1], link_1_position[2]]]))
                     temp_sets.append(np.array([[link_1_position[0], link_1_position[1], link_1_position[2]], 
                                               [link_2_position[0], link_2_position[1], link_2_position[2]]]))
                     temp_sets.append(np.array([[link_2_position[0], link_2_position[1], link_2_position[2]], 
                                               [link_3_position[0], link_3_position[1], link_3_position[2]]]))
                     color_map_temp.extend(['#0000ff' for t in xrange(3)])
                     
                     """
                     Plot the goal area
                     """                       
                     
                     temp_sets.extend(sets)
                     color_map_temp.extend(color_map)                       
                     if config['workspace_dimensions'] == 2:
                         circles = []
                         for ball in balls:
                             circles.append([ball[0][0], ball[0][1], ball[1]])
                         Plot.plot_2d_n_sets(temp_sets,
                                             circles=circles,
                                             xlabel="x",
                                             ylabel="y",
                                             x_range=[-map_size * 1.1, map_size * 1.1], 
                                             y_range=[-map_size * 1.1, map_size * 1.1],
                                             plot_type="lines",
                                             show_legend=False,
                                             color_map=color_map_temp,
                                             save=self.save,
                                             path="stats",
                                             filename="particles" + str(i) + "_" + str(j) + "_" + str(k) + ".png")
                     elif config['workspace_dimensions'] == 3:
                          Plot.plot_3d_n_sets(sets=temp_sets,
                                             balls=balls, 
                                             colormap=color_map_temp, 
                                             show_legend=False, 
                                             save=self.save, 
                                             path="stats", 
                                             filename="particles" + str(i) + "_" + str(j) + "_" + str(k) + ".png")