コード例 #1
0
    type, X = dataset_class(**DATASETS.get(dataset, {}))

    for algo_name in algorithms:
        assert(algo_name in ALGORITHMS, "Unknown algorithm: %s" % algo_name)

        title = algo_name.title() + "-" +  dataset.title()
        algo_class = getattr(algos, algo_name)
        algo = algo_class(n_components=2, **ALGORITHMS.get(algo_name, {}))
        try:
            logging.info("Running " + " ".join(title.split("-")))
            if type == ARTIFICIAL:
                X_data = X[0]
                X_data.dtype='float64'

                X_reduced = algo.run(X_data)
                plot_artificial_dataset(X_data, X_reduced, color=X[1], title=title, save=args.save, saveDir=output_dir)
            else:
                X_data = X["data"]

                X_reduced = algo.run(X_data)


                # For 2 dimensional
                plot_embedding(X_reduced, X["target"], X["images"], X['target'], title, save=args.save, saveDir=output_dir)
                if args.threeD:
                    # For 3 dimensional
                    algo = algo_class(n_components=3, n_neighbors=30)
                    X_reduced = algo.run(X_data)
                    title = title + "-" + "3D"
                    plot_embedding_3D(X_reduced, X["target"], title, save=args.save, saveDir=output_dir)
        except Exception, e:
コード例 #2
0
        for i in range(numNodes):
            for j in range(numNodes):
                if k_neighbors_array[j, i] <= k_neighbors_array[i, j]:
                    k_neighbors_array[i, j] = k_neighbors_array[j, i]
                else:
                    k_neighbors_array[j, i] = k_neighbors_array[i, j]

        #   Compute the all pair shortest path distance.
        dist_matrix = floyd_warshall(k_neighbors_array, directed=False)

        dist_matrix[np.isinf(dist_matrix)] = 0
        # Do MDS or learn embedding
        # MDS can also be seen as a case of Kernel PCA
        # using data dependent kernel
        # So using K = 1/2 D^2,
        # we generate projections along principal components

        kernel = dist_matrix ** 2

        kernel *= -0.5

        kernelPCA = KernelPCA(n_components=self.n_components, kernel='precomputed')

        return kernelPCA.fit_transform(kernel)

if __name__ == "__main__":
    isomap = Isomap(10, 3)
    X, color = datasets.make_swiss_roll(n_samples=3000)
    X_r = isomap.run(X)
    plot_artificial_dataset(X, X_r, color, "Swiss Roll")