colors = ['red', 'blue', 'darkgreen', 'orange', 'purple', 'gray']
cmaps = [
    plt.cm.Reds, plt.cm.Blues, plt.cm.Greens, plt.cm.Oranges, plt.cm.Purples,
    plt.cm.gray_r
]
i = 0
for k, v, in res.iteritems():
    plt.subplot(1, 3, i + 1)
    i += 1
    xmin = np.min(v[:, 0])
    xmax = np.max(v[:, 0])
    ymin = np.min(v[:, 1])
    ymax = np.max(v[:, 1])
    for l in range(nstrains):
        idx = label == l
        fplt.plot_embedding(v[idx], title=k, color=colors[l])
        fplt.plot_embedding_contours(v[idx],
                                     cmap=cmaps[l],
                                     contours=15,
                                     xmin=xmin,
                                     xmax=xmax,
                                     ymin=ymin,
                                     ymax=ymax)
#fig.suptitle('Embeddings JS-Diverence all')
if fig_dir is not None:
    fig.savefig(
        os.path.join(fig_dir, 'new_JSD_embedding_all_tbins=%d.pdf' % (tbins)))

    fig.savefig(
        os.path.join(fig_dir, 'new_JSD_embedding_all_tbins=%d.png' % (tbins)))
コード例 #2
0
    for algo_name in algorithms:
        assert(algo_name in ALGORITHMS, "Unknown algorithm: %s" % algo_name)

        title = algo_name.title() + "-" +  dataset.title()
        algo_class = getattr(algos, algo_name)
        algo = algo_class(n_components=2, **ALGORITHMS.get(algo_name, {}))
        try:
            logging.info("Running " + " ".join(title.split("-")))
            if type == ARTIFICIAL:
                X_data = X[0]
                X_data.dtype='float64'

                X_reduced = algo.run(X_data)
                plot_artificial_dataset(X_data, X_reduced, color=X[1], title=title, save=args.save, saveDir=output_dir)
            else:
                X_data = X["data"]

                X_reduced = algo.run(X_data)


                # For 2 dimensional
                plot_embedding(X_reduced, X["target"], X["images"], X['target'], title, save=args.save, saveDir=output_dir)
                if args.threeD:
                    # For 3 dimensional
                    algo = algo_class(n_components=3, n_neighbors=30)
                    X_reduced = algo.run(X_data)
                    title = title + "-" + "3D"
                    plot_embedding_3D(X_reduced, X["target"], title, save=args.save, saveDir=output_dir)
        except Exception, e:
            logging.error("Dataset: %s, Algorithm: %s crashed. Error::%s" % (dataset, algo_name, e))