def bishleshan(category,topic): unigrams = nepunigrams() countername = defaultdict(int) print "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"+topic.upper()+"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~" for name,engnames in category.items(): bigramslist = [] bigrmsent = [] for word,count in unigrams: if name in word: countername[engnames] += count nepalibigrm = nepbigrams(name,sentlist) for bigrams,count in nepalibigrm[:4]: bigramslist.append(bigrams) for sentence in sentlist: if bigrams in sentence: bigrmsent.append(sentence.strip()) sentsscore = analyzescore(bigramslist,bigrmsent) print "\n++++++++++++++++++++++++++++++++++++++++++++++++SENTIMENT ANALYSIS OF WORD :"+name+"++++++++++++++++++++++++++++++++++++++++++++\n" print "In references to :",nepalibigrm[0][0]," OR ",nepalibigrm[1][0] print "==========================================================>>>>>>POSITIVE SENTENCES<<<<<<==========================================================\n" print "==========================================================>>>>>>>>>>>>>>><<<<<<<<<<<<<<<==========================================================\n" for line,score in sentsscore[:4]: print line,score,'\n' print "==========================================================>>>>>>NEGATIVE SENTENCES<<<<<<=========================================================\n" print "==========================================================>>>>>>>>>>>>>>><<<<<<<<<<<<<<<=========================================================\n" for line,score in sentsscore[-4:]: print line,score,'\n' topword = sorted(countername.items(),key=lambda x : x[1],reverse=True)[0][0] topname = category.keys()[category.values().index(topword)] namepie = piedata(topname) pieplot(namepie,"MONTHLY HITS ON WORD : "+category[topname]) plotdata(countername,"TOP NAMES TOPICS") return 0
def main(argv): argid = {'func':['-id'], 'files':['simdata/svcsimn_d4a1_4.json'], '-m':['plus'], '-yl':['In-degree'], '-axisfsize':['large'], '-j':[1]} argavgid = {'func':['-ad'], 'files':['simdata/svcsimn_d4a1_4.json'], '-m':['plus'], '-xl':['Timestep'], '-yl':['Average in-degree'], '-axisfsize':['large'], '-j':[150]} #ax = p.plt.axes([0.13, 0.15, 0.6, 0.75]) p.plt.subplot(211) p.plotdata(pl.loadarg([argid]) , xylabels={'x': pl.getargval(argid, '-xl', [''])[0], 'y': pl.getargval(argid, '-yl', [''])[0]} , markset=pl.getargval(argid, '-m', ['var'])[0] , isbase=False , xlim=pl.getargval(argid, '-xlim') , ylim=pl.getargval(argid, '-ylim') , legloc=int(pl.getargval(argid, '-loc', ['1'])[0]) , ncol=int(pl.getargval(argid, '-ncol', ['1'])[0]) , numpoints=int(pl.getargval(argid, '-numpoints', ['1'])[0]) , axisfsize=pl.getaxisfsize(argid)) p.plt.subplot(212) p.plotdata(pl.loadarg([argavgid]) , xylabels={'x': pl.getargval(argavgid, '-xl', [''])[0], 'y': pl.getargval(argavgid, '-yl', [''])[0]} , markset=pl.getargval(argavgid, '-m', ['var'])[0] , isbase=False , xlim=pl.getargval(argavgid, '-xlim') , ylim=pl.getargval(argavgid, '-ylim') , legloc=int(pl.getargval(argavgid, '-loc', ['1'])[0]) , ncol=int(pl.getargval(argavgid, '-ncol', ['1'])[0]) , numpoints=int(pl.getargval(argavgid, '-numpoints', ['1'])[0]) , axisfsize=pl.getaxisfsize(argavgid)) p.plt.gcf().suptitle('In-degree of each random failed service (top) and the average in-degree\n of the available services (bottom) during cascading failure simulation', fontsize=14) p.processplot(p.plt)
theta = np.zeros([2,1]) iterations = 1500 alpha = 0.01 ones = np.ones((m,1)) X = np.hstack((ones, X)) # adding the intercept term J = costfunction.cost(X, y, theta) print(J) theta, J_history = gradientdes.gradientDescent(X, y, theta, alpha, iterations) print(theta) J = costfunction.cost(X, y, theta) print(J) plot.plotdata(X,y,theta) predict1 = np.dot([1, 3.5], theta) print('For population = 35,000, we predict a profit of') print(predict1*10000) predict2 = np.dot([1, 7], theta) print('For population = 70,000, we predict a profit of') print(predict2*10000) j_plot.j_plot(X, y, theta)
def main(argv): lsarg = [] lsarg.append({'func':['-pl'], 'files':['simdata/plotfunceff_tri-sf_d2_d8.json'], '-m':['reddia-'], '-l':['scale-free']}) lsarg.append({'func':['-pl'], 'files':['simdata/plotfunceff_tri-exp_d2_d8.json'], '-m':['bluepenta-'], '-l':['exponential']}) lsarg.append({'func':['-pl'], 'files':['simdata/plotfunceff_tri-rand_d2_d8.json'], '-m':['trihexaorg-'], '-l':['random'], '-t':['The effect of $\langle dep \\rangle$ on cascading failure in service networks'], '-xl':['Degree of dependency $\langle dep \\rangle$'], '-yl':['Cascade failed services $n_c$ (in fraction)'], '-axisfsize':['large'], '-ncol':[3], '-loc':[2]}) for i in range(len(lsarg)): ds = [] func = lsarg[i]['func'][0] step = p.STEP argstep = getargval(lsarg[i], '-j') if argstep: step = int(argstep[0]) with open(lsarg[i]['files'][0]) as f: ds = json.load(f) logx = False arglogx = getargval(lsarg[i], '-logx') if arglogx: logx = int(arglogx[0]) > 0 logy = False arglogy = getargval(lsarg[i], '-logy') if arglogy: logy = int(arglogy[0]) > 0 lb = p.LOGBINBASE arglb = getargval(lsarg[i], '-lb') if arglb: lb = float(arglb[0]) xlim = getargval(lsarg[i], '-xlim') ylim = getargval(lsarg[i], '-ylim') plotfile = getargval(lsarg[i], '-v', [None])[0] axisfsize = getargval(lsarg[i], '-axisfsize', ['medium'])[0] try: axisfsize = int(axisfsize) except: pass ncol = int(getargval(lsarg[i], '-ncol', [1])[0]) numpoints = int(getargval(lsarg[i], '-numpoints', [1])[0]) p.plotdata(ds , getargval(lsarg[i], '-l') , getargval(lsarg[i], '-t', [''])[0] , {'x': getargval(lsarg[i], '-xl', [''])[0], 'y': getargval(lsarg[i], '-yl', [''])[0]} , getargval(lsarg[i], '-m', ['var'])[0] , isbase=False , logx=logx , logy=logy , xlim=xlim , ylim=ylim , legloc=int(getargval(lsarg[i], '-loc', ['1'])[0]) , ncol=ncol , numpoints=numpoints , axisfsize=axisfsize , ax=p.plt.gca()) p.processplot(p.plt, getargval(lsarg[i], '-s', [None])[0])
import pandas as pd import scipy.optimize as op import matplotlib.pyplot as plt import plot import costfunction import gradient import accuracy data = pd.read_csv('Data/ex2data1.txt', header=None) X = data.iloc[:, [0, 1]] y = data.iloc[:, 2] m = len(y) print(data.head()) plot.plotdata(X, y) (m, n) = X.shape y = y[:, np.newaxis] ones = np.ones((m, 1)) X = np.hstack((ones, X)) #theta = np.zeros((X.shape[1],1)) #c = costfunction.cost(X, y, theta) #print(c) #test_theta = [[-24], [0.2], [0.2]] #print(np.shape(test_theta)) #print(gradient.grad(X, y, test_theta)) #X = np.array([[1,2,3], [1,3,4]])