def test_ordinal_plot(): import matplotlib matplotlib.use('Agg') from plotSlope import slope import numpy as np import pandas as pd import os if os.path.exists('test_ordinal.png'): os.remove('test_ordinal.png') df = pd.DataFrame( np.random.normal(loc=np.ones(shape=[20, 30]) * np.arange(30))) df.rename(columns=lambda el: str(el), index=lambda el: str(el), inplace=True) f = slope(df.T, width=10, height=8, kind='ordinal', savename='test_ordinal.png', dpi=200, color={ '10': 'red', '27': 'blue' }, marker=None) assert os.path.exists('test_ordinal.png') if os.path.exists('test_ordinal.png'): os.remove('test_ordinal.png')
def make_and_save_slope_plot_gs(df): grade = df.iloc[0]['grade'] subject = df.iloc[0]['subject'] d = df[["school", "boy", "moy"]] d = d.set_index("school") f = slope(d, # Need to manually adjust width and height depending on data height=16,width=10,font_size=8, title="MAP Scores for {0}, Grade {1}".format(subject, grade), font_family='GillSans', color=renew_highlights ) f.savefig('./../Output/scaled slopegraph map {0} grade {1}.png'.format(subject, grade))
def test_ordinal_plot(): import matplotlib matplotlib.use('Agg') from plotSlope import slope import numpy as np import pandas as pd import os if os.path.exists('test_ordinal.png'): os.remove('test_ordinal.png') df = pd.DataFrame( np.random.normal(loc=np.ones(shape=[20,30])*np.arange(30))) df.rename(columns = lambda el : str(el),index =lambda el : str(el),inplace=True) f = slope(df.T,width =10,height= 8,kind='ordinal',savename='test_ordinal.png',dpi=200,color={'10':'red','27':'blue'},marker=None) assert os.path.exists('test_ordinal.png') if os.path.exists('test_ordinal.png'): os.remove('test_ordinal.png')
def test_interval_plot(): import matplotlib matplotlib.use('Agg') from plotSlope import slope import pandas as pd import os data_EU = pd.read_csv(os.path.join('data', 'EU_GDP_2007_2013.csv'), index_col=0, na_values='-') EU_color = { "France": 'b', 'Germany': 'r', 'Ireland': 'chocolate', 'United Kingdom': 'purple' } if os.path.exists('test_interval.png'): os.remove('test_interval.png') f = slope( data_EU.ix[:, :-3] / 1000, kind='interval', savename='test_interval.png', dpi=200, height=18, width=30, font_size=20, color=EU_color, title= u'European GPD until 2010 and forecasts at market prices (billions of Euro) source : EUROSTAT' ) assert os.path.exists('test_interval.png') if os.path.exists('test_interval.png'): os.remove('test_interval.png')
def test_interval_plot(): import matplotlib matplotlib.use('Agg') from plotSlope import slope import pandas as pd import os data_EU = pd.read_csv(os.path.join('data','EU_GDP_2007_2013.csv'), index_col=0, na_values='-') EU_color = { "France": 'b', 'Germany': 'r', 'Ireland': 'chocolate', 'United Kingdom': 'purple' } if os.path.exists('test_interval.png'): os.remove('test_interval.png') f = slope( data_EU.ix[:,:-3] / 1000, kind='interval', savename='test_interval.png', dpi=200, height=18, width=30, font_size=20, color=EU_color, title= u'European GPD until 2010 and forecasts at market prices (billions of Euro) source : EUROSTAT') assert os.path.exists('test_interval.png') if os.path.exists('test_interval.png'): os.remove('test_interval.png')