def read_file(filename): txt = plot_files.lines_without_comments(filename) filetype = plot_files.determine_type(txt) if filetype == "paren_complex": parse_pair = plot_files.parse_pair df = pd.read_csv(txt, delimiter=' ', names=["id", "identities", "error"], converters={1: parse_pair, 2: parse_pair}, index_col=0) else: df = pd.read_csv(txt, delimiter=' ', names=["id", "identities", "error"], index_col=0) return df
def read_level_fits(filename): """ Read in fit values to the levels. Fits should be single exp Should be in the format # Level, Amp, Error(Amp), Mass, Error(Mass) 0, 1.74082463996023, 0.0154835440133309, 0.153284504901198, 0.000705009866455281 final column chi^2 optional """ txt = plot_files.lines_without_comments(filename) df = pd.read_csv(txt, delimiter=',', names=["level", "amp", "amp_error", "mass", "mass_error", "chisqr"], index_col=0) return df
def read_zrots(filename): txt = plot_files.lines_without_comments(filename) df = pd.read_csv(txt, delimiter=',', names=["level", "amp", "error"], index_col=0) return df
def read_coeffs_file(filename): txt = plot_files.lines_without_comments(filename) parse_pair = plot_files.parse_pair df = pd.read_csv(txt, delimiter=' ', names=["id", "identities", "error"], converters={1: parse_pair, 2: parse_pair}, index_col=0) return df
def read_file(filename): txt = plot_files.lines_without_comments(filename) df = pd.read_csv(txt, delimiter=' ', names=["time", "correlator", "error"], converters={1: parse_pair, 2: parse_pair}, skipinitialspace=True, index_col=0) return df