コード例 #1
0
ファイル: GRAFONAG.py プロジェクト: topicster/ROI_FONAG
def grafsmvdof(path, cont=False):
    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)
    mvd_m = genfromtxt('%s\modeloFONAG\%s\calibracion\mvd_m_RSA_OF.csv' %
                       (path, t_inputs[16]),
                       delimiter=',')
    mvd_lb = genfromtxt('%s\modeloFONAG\%s\calibracion\mvd_lb_RSA_OF.csv' %
                        (path, t_inputs[16]),
                        delimiter=',')
    mvd_ub = genfromtxt('%s\modeloFONAG\%s\calibracion\mvd_ub_RSA_OF.csv' %
                        (path, t_inputs[16]),
                        delimiter=',')
    fig = plt.figure("Seneibilidad MVD OF")
    pf.boxplot1(mvd_m,
                X_Labels=X_Labels,
                Y_Label='Sensibilidad MVD',
                S_lb=mvd_lb,
                S_ub=mvd_ub)
    print('Plot de sensibilidad MVD con intervalos de confianza')
    plt.show()
コード例 #2
0
ファイル: GRAFONAG.py プロジェクト: topicster/ROI_FONAG
def grafdpawnof(path, cont=False):
    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    if cont:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedXC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedX.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    # Nombres de parametros
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)

    X_Labels_dummy = X_Labels
    X_Labels_dummy.append('dummy')

    KS_m = genfromtxt('%s\modeloFONAG\%s\calibracion\KS_m_PAWN_OF.csv' %
                      (path, t_inputs[16]),
                      delimiter=',')
    KS_lb = genfromtxt('%s\modeloFONAG\%s\calibracion\KS_lb_PAWN_OF.csv' %
                       (path, t_inputs[16]),
                       delimiter=',')
    KS_ub = genfromtxt('%s\modeloFONAG\%s\calibracion\KS_ub_PAWN_OF.csv' %
                       (path, t_inputs[16]),
                       delimiter=',')

    fig = plt.figure(
        "Sensibilidad Dummy PAWN OF")  # plot main and total separately
    pf.boxplot1(KS_m,
                S_lb=KS_lb,
                S_ub=KS_ub,
                X_Labels=X_Labels_dummy,
                Y_Label='KS')
    print('Plot de sensibilidad PAWN con variable dummy')
    plt.show()
コード例 #3
0
ファイル: GRAFONAG.py プロジェクト: topicster/ROI_FONAG
def grafspawnof(path, cont=False):
    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    if cont:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedXC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedX.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    # Nombres de parametros
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)

    KS_median_m = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_median_m_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_median_lb = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_median_lb_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_median_ub = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_median_ub_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_mean_m = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_mean_m_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_mean_lb = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_mean_lb_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_mean_ub = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_mean_ub_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_max_m = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_max_m_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_max_lb = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_max_lb_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')
    KS_max_ub = genfromtxt(
        '%s\modeloFONAG\%s\calibracion\KS_max_ub_PAWN_OF.csv' %
        (path, t_inputs[16]),
        delimiter=',')

    fig = plt.figure("Sensibilidad PAWN OF")
    plt.subplot(131)
    pf.boxplot1(KS_median_m,
                S_lb=KS_median_lb,
                S_ub=KS_median_ub,
                X_Labels=X_Labels,
                Y_Label='KS (median)')
    plt.subplot(132)
    pf.boxplot1(KS_mean_m,
                S_lb=KS_mean_lb,
                S_ub=KS_mean_ub,
                X_Labels=X_Labels,
                Y_Label='KS (mean)')
    plt.subplot(133)
    pf.boxplot1(KS_max_m,
                S_lb=KS_max_lb,
                S_ub=KS_max_ub,
                X_Labels=X_Labels,
                Y_Label='Ks (max)')
    print('Plot de sensibilidad PAWN con intervalos de confianza')
    plt.show()
コード例 #4
0
def rsa(path,
        E_cond=[True, False, True, True, False, True],
        E_umbral=[0.5, 1, 0.7, 25, 0.5, 1],
        cont=False):
    print('ANALISIS DE SENSIBILIDAD REGIONAL PARA FUNCIONES OBJETIVO')
    start = time.time()

    print(' ')
    # %% Paso 1a: Cargar datos del proceso de calibracion
    print('Paso 1a: Cargar datos del proceso de calibracion')

    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    print('Lectura de inputs')

    # Crear carpeta de salidas
    print('Crear carpeta de salidas')
    os.system('md modeloFONAG\\%s\\sensibilidad' % t_inputs[16])

    # Matriz de combinaciones de parametros
    if cont:
        XC = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedXC.csv' %
                        (path, t_inputs[16]),
                        delimiter=',',
                        skip_header=1)
    else:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedX.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    print('Lectura de combinaciones de parametros')
    # Nombres de parametros
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)

    # Matriz de funciones objetivo
    if cont:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedEC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedE.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    E[:, 0] = 1 - E[:, 0]
    E[:, 3] = abs(E[:, 3])
    E[:, 4] = 1 - E[:, 4]
    print('Lectura de funciones objetivo')

    print(' ')
    # %% Paso 1b: Analisis de sensibilidad regional
    print('Paso 1b: Analisis de sensibilidad regional')

    # Definir que indicadores se usan para RSA
    E_Labels = ['NSE', 'RMSE', 'RSR', 'PBIAS', 'KGE', 'OF']
    if len(E_cond) == 5:
        E_cond.append(False)  # Funciones objetivo
    elif len(E_cond) == 6:
        E_cond[5] = False  # Funciones objetivo
    elif len(E_cond) != 6:
        E_cond = [True, False, True, True, False, False]  # Funciones objetivo
    if len(E_umbral) == 5:
        E_umbral.append(1)  # Funciones objetivo
    elif len(E_umbral) != 6:
        E_umbral = [0.5, 1, 0.7, 25, 0.5, 1]
    print('Definir umbrales de aceptacion')

    # Extraer funciones seleccionadas
    E_umbral_mod = [
        1 - E_umbral[0], E_umbral[1], E_umbral[2],
        abs(E_umbral[3]), 1 - E_umbral[4], E_umbral[5]
    ]
    E_umbrales = []
    E_cond_index = []
    for cond_index in range(6):
        if E_cond[cond_index]:
            E_umbrales.append(E_umbral_mod[cond_index])
            E_cond_index.append(cond_index)
    E_mod = E[:, E_cond_index]
    print('Extraer funciones seleccionadas')

    # Aplicar Analisis de Sensibilidad Regional
    E_max = np.max(E_mod, axis=0) <= E_umbrales
    E_min = np.min(E_mod, axis=0) >= E_umbrales
    if E_max.all():
        print('Todas las simulaciones cumplen los umbrales')
    elif E_min.all():
        print('No existen simulaciones que cumplan los umbrales.')
    else:
        mvd, spread, irr, idxb = Rt.RSA_indices_thres(X, E_mod, E_umbrales)
        print('Aplicar Analisis de Sensibilidad Regional')
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\idxb_RSA.csv',
                   idxb,
                   delimiter=',',
                   header='',
                   comments='',
                   fmt='%s')
        # Plot CDFs de los parametros
        Rt.RSA_plot_thres(X,
                          idxb,
                          X_Labels=X_Labels,
                          str_legend=['cumplen', 'no cumplen'])
        plt.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                    r'\p_RSA_cdf.png',
                    orientation='landscape',
                    papertype='a4')
        print('Plot CDFs de los parametros')

        # Calcular intervalos de confianza de los indicadores de sensibilidad usando bootstrapping
        Nboot = 1000
        mvd, spread, irr, idxb = Rt.RSA_indices_thres(X,
                                                      E_mod,
                                                      E_umbrales,
                                                      Nboot=Nboot)
        # mvd, spread e irr tienen tamano (Nboot, M)
        print('Calcular intervalos de confianza')

        # Calcular media e intervalos de confianza de MVD entre los remuestreos:
        mvd_m, mvd_lb, mvd_ub = aggregate_boot(mvd)  # shape (M,)

        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_m_rsa.csv',
                   mvd_m,
                   delimiter=',',
                   header='',
                   comments='')
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_lb_rsa.csv',
                   mvd_lb,
                   delimiter=',',
                   header='',
                   comments='')
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_ub_rsa.csv',
                   mvd_ub,
                   delimiter=',',
                   header='',
                   comments='')

        # Plot resultados:
        fig = plt.figure()
        pf.boxplot1(mvd_m,
                    X_Labels=X_Labels,
                    Y_Label='Sensibilidad MVD',
                    S_lb=mvd_lb,
                    S_ub=mvd_ub)
        fig.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                    r'\p_MVD_boot.png',
                    orientation='landscape',
                    papertype='a4')
        print('Plot de sensibilidad MVD con intervalos de confianza')

    elapsed_time = (time.time() - start) / 60
    print('El proceso de analisis de sensibilidad RSA tomo %s minutos.' %
          elapsed_time)
    print('FIN PASO 1')
    plt.show()
コード例 #5
0
def pawn_OF(path, cont=False):
    print('ANALISIS DE SENSIBILIDAD PAWN PARA OF')
    start = time.time()

    print(' ')
    # %% Paso 4a: Cargar datos del proceso de calibracion
    print('Paso 4a: Cargar datos del proceso de calibracion')

    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    print('Lectura de inputs')

    # Crear carpeta de salidas
    print('Crear carpeta de salidas')
    os.system('md modeloFONAG\\%s\\sensibilidad' % t_inputs[16])

    # Matriz de combinaciones de parametros
    if cont:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedXC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedX.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    print('Lectura de combinaciones de parametros')
    # Nombres de parametros
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)

    # Matriz de funciones objetivo
    if cont:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedEC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedE.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    E = E[:, 5]
    print('Lectura de funciones objetivo')

    print(' ')
    # %% Paso 4b: Analisis de sensibilidad PAWN
    print('Paso 4b: Analisis de sensibilidad PAWN')

    n = 10  # numero de intervalos condicionantes

    # Calcular y plotear CDFs condicionales y no condicionales:
    YF, FU, FC, xc = PAWN.pawn_plot_cdf(X,
                                        E,
                                        n,
                                        cbar=True,
                                        n_col=3,
                                        labelinput=X_Labels)
    plt.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                r'\p_PAWN_OF_cdf.png',
                orientation='landscape',
                papertype='a4')
    print('Plot de CDFs condicionales y no condicionales')

    # Usar bootstrapping para calcular intervalos de confianza:
    Nboot = 1000
    # Calcular indicadores de sensibilidad para Nboot remuestreos
    KS_median, KS_mean, KS_max = PAWN.pawn_indices(X, E, n, Nboot=Nboot)
    # KS_median, KS_mean y KS_max tienen tamano (Nboot, M)
    # Calcular media e intervalos de confianza entre los resultados de los remuestreos:
    KS_median_m, KS_median_lb, KS_median_ub = aggregate_boot(
        KS_median)  # shape (M,)
    KS_mean_m, KS_mean_lb, KS_mean_ub = aggregate_boot(KS_mean)  # shape (M,)
    KS_max_m, KS_max_lb, KS_max_ub = aggregate_boot(KS_max)  # shape (M,)

    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_median_m_PAWN_OF.csv',
               KS_median_m,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_median_lb_PAWN_OF.csv',
               KS_median_lb,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_median_ub_PAWN_OF.csv',
               KS_median_ub,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_mean_m_PAWN_OF.csv',
               KS_mean_m,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_mean_lb_PAWN_OF.csv',
               KS_mean_lb,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_mean_ub_PAWN_OF.csv',
               KS_mean_ub,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_max_m_PAWN_OF.csv',
               KS_max_m,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_max_lb_PAWN_OF.csv',
               KS_max_lb,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_max_ub_PAWN_OF.csv',
               KS_max_ub,
               delimiter=',',
               header='',
               comments='')

    # Plot bootstrapping results:
    fig = plt.figure()
    plt.subplot(131)
    pf.boxplot1(KS_median_m,
                S_lb=KS_median_lb,
                S_ub=KS_median_ub,
                X_Labels=X_Labels,
                Y_Label='KS (median)')
    plt.subplot(132)
    pf.boxplot1(KS_mean_m,
                S_lb=KS_mean_lb,
                S_ub=KS_mean_ub,
                X_Labels=X_Labels,
                Y_Label='KS (mean)')
    plt.subplot(133)
    pf.boxplot1(KS_max_m,
                S_lb=KS_max_lb,
                S_ub=KS_max_ub,
                X_Labels=X_Labels,
                Y_Label='Ks (max)')
    fig.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                r'\p_PAWN_OF_boot.png',
                orientation='landscape',
                papertype='a4')
    print('Plot de sensibilidad PAWN con intervalos de confianza')

    print(' ')
    # %% Paso 4c: Analisis de sensibilidad PAWN para una variable dummy
    print('Paso 4c: Analisis de sensibilidad PAWN para una variable dummy')

    # Nombre de los parametros incluyendo el dummy:
    X_Labels_dummy = X_Labels
    X_Labels_dummy.append('dummy')

    # Indicadores de sensibilidad usando bootstrap y la variable dummy:
    # Usar bootstrapping para calcular intervalos de confianza:
    Nboot = 1000
    # Calcular los indicadores de sensibilidad usando los remuestreos.
    # Se analiza solamente KS_max (y no KS_median y KS_mean) para mostrar resultados solamente.
    _, _, KS_max, KS_dummy = PAWN.pawn_indices(X,
                                               E,
                                               n,
                                               Nboot=Nboot,
                                               dummy=True)
    # KS_max has shape (Nboot, M), KS_dummy has shape (Nboot, )

    # Cacular media e intervalos de confianza entre los remuestreos:
    KS_m, KS_lb, KS_ub = aggregate_boot(np.column_stack((KS_max, KS_dummy)))

    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_m_PAWN_OF.csv',
               KS_m,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_lb_PAWN_OF.csv',
               KS_lb,
               delimiter=',',
               header='',
               comments='')
    np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
               r'\KS_ub_PAWN_OF.csv',
               KS_ub,
               delimiter=',',
               header='',
               comments='')

    # Plot resultados de boostrap
    fig = plt.figure()  # plot main and total separately
    pf.boxplot1(KS_m,
                S_lb=KS_lb,
                S_ub=KS_ub,
                X_Labels=X_Labels_dummy,
                Y_Label='KS')
    fig.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                r'\p_PAWN_OF_dummy.png',
                orientation='landscape',
                papertype='a4')
    print('Plot de sensibilidad PAWN con variable dummy')

    elapsed_time = (time.time() - start) / 60
    print(
        'El proceso de analisis de sensibilidad PAWN para OF tomo %s minutos.'
        % elapsed_time)
    print('FIN PASO 4')
    plt.show()
コード例 #6
0
def rsa_OF(path, E_umbrales=1, cont=False):
    print('CONVERGENCIA DEL ANALISIS DE SENSIBILIDAD REGIONAL PARA OF')
    start = time.time()

    print(' ')
    # %% Paso 2a: Cargar datos del proceso de calibracion
    print('Paso 2a: Cargar datos del proceso de calibracion')

    inputs = open(r'%s\modeloFONAG\inputs\t_inputs.csv' % path, 'r')
    t_inputs = inputs.read().split('\n')[1].split('\r')[0].split(',')
    inputs.close()
    print('Lectura de inputs')

    # Crear carpeta de salidas
    print('Crear carpeta de salidas')
    os.system('md modeloFONAG\\%s\\sensibilidad' % t_inputs[16])

    # Matriz de combinaciones de parametros
    if cont:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedXC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        X = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedX.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    print('Lectura de combinaciones de parametros')
    # Nombres de parametros
    X_Labels = open(
        r'%s\modeloFONAG\%s\calibracion\X_Labels.csv' % (path, t_inputs[16]),
        'r')
    X_Labels = X_Labels.read().split('\n')[0].split(',')
    X_Labels = map(str, X_Labels)

    # Matriz de funciones objetivo
    if cont:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedEC.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    else:
        E = genfromtxt('%s\modeloFONAG\%s\calibracion\sortedE.csv' %
                       (path, t_inputs[16]),
                       delimiter=',',
                       skip_header=1)
    E = E[:, 5]
    print('Lectura de funciones objetivo')

    print(' ')
    # %% Paso 2b: Analisis de sensibilidad regional
    print('Paso 2b: Analisis de sensibilidad regional')

    # Usar OF para RSA
    # E_umbrales = 1
    print('Definir umbrales de aceptacion')

    # Aplicar Analisis de Sensibilidad Regional
    E_max = max(E)
    E_min = min(E)
    if E_max <= E_umbrales:
        print('Todas las simulaciones cumplen los umbrales')
    elif E_min >= E_umbrales:
        print('No existen simulaciones que cumplan los umbrales.')
    else:
        mvd, spread, irr, idxb = Rt.RSA_indices_thres(X, E, E_umbrales)
        print('Aplicar Analisis de Sensibilidad Regional')

        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\idxb_RSA_OF.csv',
                   idxb,
                   delimiter=',',
                   header='',
                   comments='',
                   fmt='%s')

        # Plot CDFs de los parametros
        Rt.RSA_plot_thres(X,
                          idxb,
                          X_Labels=X_Labels,
                          str_legend=['cumplen', 'no cumplen'])
        plt.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                    r'\p_RSA_OF_cdf.png',
                    orientation='landscape',
                    papertype='a4')
        print('Plot CDFs de los parametros')

        # Calcular intervalos de confianza de los indicadores de sensibilidad usando bootstrapping
        Nboot = 1000
        mvd, spread, irr, idxb = Rt.RSA_indices_thres(X,
                                                      E,
                                                      E_umbrales,
                                                      Nboot=Nboot)
        # mvd, spread e irr tienen tamano (Nboot, M)
        print('Calcular intervalos de confianza')

        # Calcular media e intervalos de confianza de MVD entre los remuestreos:
        mvd_m, mvd_lb, mvd_ub = aggregate_boot(mvd)  # shape (M,)
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_m_RSA_OF.csv',
                   mvd_m,
                   delimiter=',',
                   header='',
                   comments='')
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_lb_RSA_OF.csv',
                   mvd_lb,
                   delimiter=',',
                   header='',
                   comments='')
        np.savetxt(r'%s\modeloFONAG\%s\calibracion' % (path, t_inputs[16]) +
                   r'\mvd_ub_RSA_OF.csv',
                   mvd_ub,
                   delimiter=',',
                   header='',
                   comments='')
        # Plot results:
        fig = plt.figure()
        pf.boxplot1(mvd_m,
                    X_Labels=X_Labels,
                    Y_Label='Sensibilidad MVD',
                    S_lb=mvd_lb,
                    S_ub=mvd_ub)
        fig.savefig(r'%s\modeloFONAG\%s\sensibilidad' % (path, t_inputs[16]) +
                    r'\p_MVD_OF_boot.png',
                    orientation='landscape',
                    papertype='a4')
        print('Plot de sensibilidad MVD con intervalos de confianza')

    elapsed_time = (time.time() - start) / 60
    print(
        'El proceso de analisis de sensibilidad RSA para OF tomo %s minutos.' %
        elapsed_time)
    print('FIN PASO 2')
    plt.show()