コード例 #1
0
    def plotSTi(self, width=0.5, addval=True, sortit=True, *args, **kwargs):
        '''
        Plot a barchart of the given STi
        
        Parameters
        -----------
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the morris mu values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis      
        *args, **kwargs : args
            passed to the matplotlib.bar 
        
        '''
        if self.repl > 1:
            print 'Table generates only output of first line!'

        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1,
                      self.STi[0],
                      self._namelist,
                      width=width,
                      addval=addval,
                      sortit=True,
                      *args,
                      **kwargs)
        ax1.set_ylabel(r'$S_Ti$', fontsize=20)
        ax1.yaxis.label.set_rotation('horizontal')
        ax1.yaxis.set_label_coords(-0.02, 1.)
        plt.draw()
        return fig, ax1
コード例 #2
0
 def plotSTi(self, width = 0.5, addval = True, sortit = True,
             *args, **kwargs):
     '''
     Plot a barchart of the given STi
     
     Parameters
     -----------
     width : float (0-1)
         width of the bars in the barchart
     addval : bool
         if True, the morris mu values are added to the graph
     sortit : bool
         if True, larger values (in absolute value) are plotted closest to
         the y-axis      
     *args, **kwargs : args
         passed to the matplotlib.bar 
     
     '''
     if self.repl > 1:
         print 'Table generates only output of first line!'
         
     fig = plt.figure() 
     ax1 = fig.add_subplot(111)
     ax1 = plotbar(ax1, self.STi[0], self._namelist, width = width, 
                   addval = addval, sortit = True, *args, **kwargs)
     ax1.set_ylabel(r'$S_Ti$',fontsize=20)
     ax1.yaxis.label.set_rotation('horizontal')
     ax1.yaxis.set_label_coords(-0.02, 1.)        
     plt.draw()
     return fig, ax1      
コード例 #3
0
    def plotsens(self, indice='PE', width = 0.5, addval = True, sortit = True, outputid = 0,
                *args, **kwargs):
        '''
        Plot a barchart of either CAS, CTRS or PE based Senstivitity
        
        Parameters
        -----------
        indice: PE, CAS or CTRS
            choose which indice you want to show
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the sensitivity values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis      
        outputid : int
            the output to use whe multiple are compared; starts with 0
        *args, **kwargs : args
            passed to the matplotlib.bar
        
        Returns
        ----------
        fig : matplotlib.figure.Figure object
            figure containing the output
        ax1 : axes.AxesSubplot object
            the subplot
        '''
        if indice == 'PE':
            indtoplot = self.PE_SENS[:,outputid]
        elif indice == 'CAS':
            indtoplot = self.CAS_SENS[:,outputid]
        elif indice == 'CTRS':
            indtoplot = self.CTRS_SENS[:,outputid]            
        else:
            raise Exception('Choose either PE, CAS or CTRS')

        
        fig = plt.figure() 
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1, indtoplot, self._namelist, width = width, 
                      addval = addval, sortit = True, *args, **kwargs)
        ax1.set_ylabel(indice,fontsize=20)
        ax1.yaxis.label.set_rotation('horizontal')
        ax1.yaxis.set_label_coords(-0.02, 1.)
        plt.draw()
        return fig, ax1
コード例 #4
0
    def plotmustar(self, width = 0.5, addval = True, sortit = True, outputid = 0,
                *args, **kwargs):
        '''
        Plot a barchart of the given mustar
        
        mu* is a measure for the first-order effect on the model output.
        By taking the average of the absolute values of the parameter
        distribution, the absolute effect on the output can be calculated. This
        is very useful when you are working with non-monotonic functions. The
        drawback is that you lose information about the direction of influence 
        (is this factor influencing the output in a positive or negative way?).
        For the direction of influence use plotmustar!

        Parameters
        -----------
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the morris values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis
        outputid : int
            the output to use whe multiple are compared; starts with 0
        *args, **kwargs : args
            passed to the matplotlib.bar; width is already used

        Returns
        ----------
        fig: matplotlib.figure.Figure object
            figure containing the output
        ax1: axes.AxesSubplot object
            the subplot
        '''

        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1, self.mustar[outputid*self._ndim:(outputid+1)*self._ndim], self._namelist, width = width,
                      addval = addval, sortit = True, *args, **kwargs)
        ax1.set_ylabel(r'$\mu*$',fontsize=20)
        ax1.yaxis.label.set_rotation('horizontal')
        ax1.yaxis.set_label_coords(-0.02, 1.)
        plt.draw()
        return fig, ax1
コード例 #5
0
    def plotmu(self, width = 0.5, addval = True, sortit = True, outputid = 0,
                *args, **kwargs):
        '''
        Plot a barchart of the given mu
        
        mu is a measure for the first-order effect on the model output. However
        the use of mu can be tricky because if the model is non-monotonic
        negative elements can be in the parameter distribution and by taking the
        mean of the variance (= mu!) the netto effect is cancelled out! Should
        always be used together with plotsigma in order to see whether higher
        order effects are occuring, high sigma values with low mu values can 
        be caused by non-monotonicity of functions. In order to check this use
        plotmustar and/or plotmustarsigma

        Parameters
        -----------
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the morris mu values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis
        outputid : int
            the output to use whe multiple are compared; starts with 0
        *args, **kwargs : args
            passed to the matplotlib.bar

        Returns
        ----------
        fig : matplotlib.figure.Figure object
            figure containing the output
        ax1 : axes.AxesSubplot object
            the subplot
        '''
        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1, self.mu[outputid*self._ndim:(outputid+1)*self._ndim], self._namelist, width = width,
                      addval = addval, sortit = True, *args, **kwargs)
        ax1.set_ylabel(r'$\mu$',fontsize=20)
        ax1.yaxis.label.set_rotation('horizontal')
        ax1.yaxis.set_label_coords(-0.02, 1.)
        plt.draw()
        return fig, ax1
コード例 #6
0
    def plotsens(self, indice="PE", width=0.5, addval=True, sortit=True, outputid=0, *args, **kwargs):
        """
        Plot a barchart of either CAS, CTRS or PE based Senstivitity
        
        Parameters
        -----------
        indice: PE, CAS or CTRS
            choose which indice you want to show
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the sensitivity values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis      
        outputid : int
            the output to use whe multiple are compared; starts with 0
        *args, **kwargs : args
            passed to the matplotlib.bar
        
        Returns
        ----------
        fig : matplotlib.figure.Figure object
            figure containing the output
        ax1 : axes.AxesSubplot object
            the subplot
        """
        if indice == "PE":
            indtoplot = self.PE_SENS[:, outputid]
        elif indice == "CAS":
            indtoplot = self.CAS_SENS[:, outputid]
        elif indice == "CTRS":
            indtoplot = self.CTRS_SENS[:, outputid]
        else:
            raise Exception("Choose either PE, CAS or CTRS")

        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1, indtoplot, self._namelist, width=width, addval=addval, sortit=True, *args, **kwargs)
        ax1.set_ylabel(indice, fontsize=20)
        ax1.yaxis.label.set_rotation("horizontal")
        ax1.yaxis.set_label_coords(-0.02, 1.0)
        plt.draw()
        return fig, ax1
コード例 #7
0
    def plotsigma(self, width = 0.5, addval = True, sortit = True, outputid = 0,
                *args, **kwargs):
        '''
        Plot a barchart of the given sigma
        
        sigma is a measure for the higher order effects (e.g. curvatures and 
        interactions). High sigma values typically occurs when for example 
        parameters are correlated, the model is non linear,... The sum of all
        these effects is sigma. For linear models without any correlation sigma
        should be approximately zero.        
        

        Parameters
        -----------
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the morris values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis
        outputid : int
            the output to use whe multiple are compared; starts with 0
        *args, **kwargs : args
            passed to the matplotlib.bar

        Returns
        ----------
        fig : matplotlib.figure.Figure object
            figure containing the output
        ax1 : axes.AxesSubplot object
            the subplot

        '''
        fig = plt.figure()
        ax1 = fig.add_subplot(111)
        ax1 = plotbar(ax1, self.sigma[outputid*self._ndim:(outputid+1)*self._ndim], self._namelist, width = width,
                      addval = addval, sortit = True, *args, **kwargs)
        ax1.set_ylabel(r'$\sigma$',fontsize=20)
        ax1.yaxis.label.set_rotation('horizontal')
        ax1.yaxis.set_label_coords(-0.02, 1.)
        plt.draw()
        return fig, ax1
コード例 #8
0
    def runTestModel(self, ai):
        ''' Run a testmodel

        Use a testmodel to get familiar with the method and try things out. The
        implemented model is the G Sobol function: testfunction with
        analytical solution, moire information, see [M3]_

        Parameters
        -----------
        ai : list
            list with the input factors (equal size as number of factors)

        Examples
        ---------
        >>> ai=[78, 12, 0.5, 2, 97, 33]
        >>> Xi = [(0.0,1.0,r'$X_1$'),(0.0,1.0,r'$X_2$'),(0.0,1.0,r'$X_3$'),
                  (0.0,1.0,r'$X_4$'),(0.0,1.0,r'$X_5$'),(0.0,1.0,r'$X_6$')]
        >>> #set up the morris screening class
        >>> sm = MorrisScreening(Xi,ModelType = 'testmodel')
        >>> #Get an optimized set of trajectories
        >>> OptMatrix, OptOutVec = sm.Optimized_Groups(nbaseruns=100,
                                                       intervals = 4,
                                                       noptimized=4,
                                                       Delta = 0.4)
        >>> #compare the selected trajects with the general
        >>> sm.Optimized_diagnostic(width=0.15)
        >>> #run a testmodel and get the outputs
        >>> sm.runTestModel(ai)

        '''

        output = np.zeros((sm.OptOutMatrix.shape[0],1))
        for i in range(sm.OptOutMatrix.shape[0]):
             output[i,:] = analgfunc(ai,sm.OptOutMatrix[i,:])

        SAmeas_out, OutMatrix = self.Morris_Measure_Groups(output)

        print 'Higher values of ai correspond to lower importance of Xi \n'

        #Analytical to compare -> G
        Vi = np.zeros(len(ai))
        for i in range(len(ai)):
            Vi[i] = (1./3.)/(1.+ai[i])**2
        VTi = np.zeros(len(ai))
        for i in range(len(ai)):
            Vj = np.prod(np.delete(Vi,i)+1.)
            VTi[i] = Vi[i] * Vj
        Vtot = 1.
        for i in range(len(ai)):
            Vtot = Vtot * (1+Vi[i])
        Vtot = Vtot -1.

        print 'Morris gives only qualitive measures of importance, \n'
        print 'a correspondance between STi and mustar is expected \n'
        print 'and compared here \n'
        print ' \n'

        print 'Analytical Solution for STi: \n'
        print VTi/Vtot
        print 'The Morris mu* results: \n'
        print self.mustar

        print 'A barplot is generated...'
        fig, ax1 = self.plotmustar(width=0.15, ec='grey',fc='grey')
        ax1.set_title('Morris screening result')
        fig2 = plt.figure()
        ax2 = fig2.add_subplot(111)
        ax2 = plotbar(ax2, VTi/Vtot, self._namelist, width = 0.15,
                      addval = True, sortit = True, ec='grey',fc='grey')
        ax2.set_title('Analytical result')
コード例 #9
0
 def plot_SRC(self, width = 0.2, addval = True, sortit = True, outputid = 'all',
             ncols = 3, outputnames=[], *args, **kwargs):
     '''
     Plot a barchart of the SRC values; actually a Tornadoplot in the 
     horizontal direction. More in the style of the other methods.
     
     TODO: make for subset of outputs, also in other methods; currently all or 1
     
     Parameters
     -----------
     width : float (0-1)
         width of the bars in the barchart
     addval : bool
         if True, the sensitivity values are added to the graph
     sortit : bool
         if True, larger values (in absolute value) are plotted closest to
         the y-axis      
     outputid : int or all
         the output to use whe multiple are compared; starts with 0
         if all, the different outputs are plotted in subplots
     ncols : int
         number of columns to put the subplots in
     outputnames :  list of strings
         [] to plot no outputnames, otherwise list of strings equal to the
         number of outputs
     *args, **kwargs : args
         passed to the matplotlib.bar
     
     Returns
     ----------
     fig : matplotlib.figure.Figure object
         figure containing the output
     ax1 : axes.AxesSubplot object
         the subplot
     
     Examples
     ---------
     >>> #plot single SRC
     >>> reg.plot_SRC(outputid=0, width=0.3, sortit = True, 
                      ec='grey',fc='grey')
     >>> #plot single SRC (assume 4 outputs)      
     >>> reg.plot_SRC(outputid = 'all' , ncols = 2, 
                       outputnames=['o1','o2','o3','o4'], ec='grey', fc='grey')
     '''
     if outputid == 'all':
                 #define number of rows
         numsrc = self.SRC.shape[1]
         nrows = np.divide(numsrc,ncols)
         if np.remainder(numsrc,ncols)>0:
             nrows+=1
         #prepare plots
         fig, axes = plt.subplots(nrows = nrows, ncols = ncols, figsize=(40,40), facecolor = 'white')
         fig.subplots_adjust(hspace=0.25, wspace=0.2)
     
         i=0
         for ax in axes.flat:
             if i<numsrc:
                 ax = plotbar(ax, self.SRC[:,i], self._namelist, 
                              width = width, addval = addval, 
                              sortit = True, *args, **kwargs)
                 ax.set_ylabel('SRC',fontsize=15)
                 ax.yaxis.label.set_rotation('horizontal')
                 ax.yaxis.set_label_coords(-0.02, 1.)
                 if outputnames:
                     ax.set_title(outputnames[i])
             else:
                 ax.set_axis_off()
             i+=1
     else:
         print 'SRC values of output ',outputid,' is shown in graph'
         fig = plt.figure() 
         ax1 = fig.add_subplot(111)
         ax1 = plotbar(ax1, self.SRC[:,outputid], self._namelist, width = width, 
                       addval = addval, sortit = True, *args, **kwargs)
         ax1.set_ylabel('SRC',fontsize=20)
         ax1.yaxis.label.set_rotation('horizontal')
         ax1.yaxis.set_label_coords(-0.02, 1.)
         plt.draw()
         
         return fig, ax1
コード例 #10
0
    def plot_SRC(self,
                 width=0.2,
                 addval=True,
                 sortit=True,
                 outputid='all',
                 ncols=3,
                 outputnames=[],
                 *args,
                 **kwargs):
        '''
        Plot a barchart of the SRC values; actually a Tornadoplot in the 
        horizontal direction. More in the style of the other methods.
        
        TODO: make for subset of outputs, also in other methods; currently all or 1
        
        Parameters
        -----------
        width : float (0-1)
            width of the bars in the barchart
        addval : bool
            if True, the sensitivity values are added to the graph
        sortit : bool
            if True, larger values (in absolute value) are plotted closest to
            the y-axis      
        outputid : int or all
            the output to use whe multiple are compared; starts with 0
            if all, the different outputs are plotted in subplots
        ncols : int
            number of columns to put the subplots in
        outputnames :  list of strings
            [] to plot no outputnames, otherwise list of strings equal to the
            number of outputs
        *args, **kwargs : args
            passed to the matplotlib.bar
        
        Returns
        ----------
        fig : matplotlib.figure.Figure object
            figure containing the output
        ax1 : axes.AxesSubplot object
            the subplot
        
        Examples
        ---------
        >>> #plot single SRC
        >>> reg.plot_SRC(outputid=0, width=0.3, sortit = True, 
                         ec='grey',fc='grey')
        >>> #plot single SRC (assume 4 outputs)      
        >>> reg.plot_SRC(outputid = 'all' , ncols = 2, 
                          outputnames=['o1','o2','o3','o4'], ec='grey', fc='grey')
        '''
        if outputid == 'all':
            #define number of rows
            numsrc = self.SRC.shape[1]
            nrows = np.divide(numsrc, ncols)
            if np.remainder(numsrc, ncols) > 0:
                nrows += 1
            #prepare plots
            fig, axes = plt.subplots(nrows=nrows,
                                     ncols=ncols,
                                     figsize=(40, 40),
                                     facecolor='white')
            fig.subplots_adjust(hspace=0.25, wspace=0.2)

            i = 0
            for ax in axes.flat:
                if i < numsrc:
                    ax = plotbar(ax,
                                 self.SRC[:, i],
                                 self._namelist,
                                 width=width,
                                 addval=addval,
                                 sortit=True,
                                 *args,
                                 **kwargs)
                    ax.set_ylabel('SRC', fontsize=15)
                    ax.yaxis.label.set_rotation('horizontal')
                    ax.yaxis.set_label_coords(-0.02, 1.)
                    if outputnames:
                        ax.set_title(outputnames[i])
                else:
                    ax.set_axis_off()
                i += 1
        else:
            print 'SRC values of output ', outputid, ' is shown in graph'
            fig = plt.figure()
            ax1 = fig.add_subplot(111)
            ax1 = plotbar(ax1,
                          self.SRC[:, outputid],
                          self._namelist,
                          width=width,
                          addval=addval,
                          sortit=True,
                          *args,
                          **kwargs)
            ax1.set_ylabel('SRC', fontsize=20)
            ax1.yaxis.label.set_rotation('horizontal')
            ax1.yaxis.set_label_coords(-0.02, 1.)
            plt.draw()

            return fig, ax1