for i, scheduler in enumerate(no_error): no_error_data[i].append(np.array(res[scheduler]).mean()) for i, scheduler in enumerate(with_error): with_error_data[i].append(np.array(res[scheduler]).mean()) figures = [("No error", float(0), no_error, no_error_data), (r"$\sigma={}$".format(args.sigma), args.sigma, with_error, with_error_data)] for title, sigma, schedulers, data in figures: fig = plt.figure(title) ax = fig.add_subplot(111) plt.xlabel("$d/n$") plt.ylabel("mean sojourn time (s)") for scheduler, mst, style in zip(schedulers, data, plot_helpers.cycle_styles('x')): ax.semilogy(dns, mst, style, label=scheduler) ax.grid() handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1)) ax.grid('on') if args.for_paper: fmt = 'sojourn-vs-dn_{}_{}_{}.pdf' fname = fmt.format(args.dataset, sigma, args.load) plt.savefig(fname,bbox_extra_artists=(lgd,), bbox_inches='tight') if not args.for_paper: plt.show()
for i, scheduler in enumerate(no_error): no_error_data[i].append(np.array(res[scheduler]).mean()) for i, scheduler in enumerate(with_error): with_error_data[i].append(np.array(res[scheduler]).mean()) figures = [("No error", float(0), no_error, no_error_data), (r"$\sigma={}$".format(args.sigma), args.sigma, with_error, with_error_data)] for title, sigma, schedulers, data in figures: fig = plt.figure(title) ax = fig.add_subplot(111) plt.xlabel("$d/n$") plt.ylabel("mean sojourn time (s)") for scheduler, mst, style in zip(schedulers, data, plot_helpers.cycle_styles('x')): ax.semilogy(dns, mst, style, label=scheduler) ax.grid() handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1)) ax.grid('on') if args.for_paper: fmt = 'sojourn-vs-dn_{}_{}_{}.pdf' fname = fmt.format(args.dataset, sigma, args.load) plt.savefig(fname, bbox_extra_artists=(lgd, ), bbox_inches='tight') if not args.for_paper: plt.show()
res = shelve.open(fname, 'r') for i, scheduler in enumerate(no_error): no_error_data[i].append(np.array(res[scheduler]).mean()) for i, scheduler in enumerate(with_error): with_error_data[i].append([r.mean() for r in res[scheduler]]) for scheduler, err_data in zip(with_error, with_error_data): fig = plt.figure(scheduler) ax = fig.add_subplot(111) plt.xlabel("$\sigma$") plt.ylabel("mean sojourn time (s)") xs = list(range(1, len(sigmas) + 1)) xs[0] -= 1 xs[-1] += 1 for noerr_sched, noerr_data, style in zip(no_error, no_error_data, plot_helpers.cycle_styles()): ax.semilogy(xs, noerr_data, style, label=noerr_sched) ax.boxplot(err_data) plt.xticks(range(1, len(sigmas) + 1), sigmas) plt.ylim(min([min(d) for d in no_error_data]) * 0.85, max([max(d) for d in no_error_data]) / 0.85) handles, labels = ax.get_legend_handles_labels() lgd = ax.legend(handles, labels, loc=2, bbox_to_anchor=(1, 1)) if args.for_paper: fmt = 'sojourn-vs-error_{}_{}_{}_{}.pdf' fname = fmt.format(scheduler, args.dataset, args.d_over_n, args.load) plt.savefig(fname,bbox_extra_artists=(lgd,), bbox_inches='tight') if not args.for_paper: plt.show()
res = shelve.open(fname, 'r') for scheduler in no_error: no_error_data.append(samples(res[scheduler])) for scheduler in with_error: with_error_data.append(samples(res[scheduler])) figures = [("No error", float(0), no_error, no_error_data), (r"$\sigma={}$".format(args.sigma), args.sigma, with_error, with_error_data)] for title, sigma, schedulers, data in figures: plt.figure(title) plt.xlabel("Slowdown") plt.ylabel("ECDF") ys = np.linspace(1 / NPOINTS, 1, NPOINTS) for scheduler, xs, style in zip(schedulers, data, plot_helpers.cycle_styles()): # plot the CDF of results plt.semilogx(xs, ys, label=scheduler) plt.grid() plt.legend(loc=0) if args.for_paper: fmt = 'slowdown_{}_{}_{}_{}.pdf' fname = fmt.format(args.dataset, sigma, args.d_over_n, args.l) plt.savefig(fname) if not args.for_paper: plt.show()