コード例 #1
0
ファイル: mapelites.py プロジェクト: p1ndsvin/DeepHyperion-1
 def plot_map_of_elites(self, perfs, log_dir_name):
     """
     Plot a heatmap of elites
     """
     plot_heatmap(perfs,
                  self.feature_dimensions[1].name,
                  self.feature_dimensions[0].name,
                  savefig_path=log_dir_name)
コード例 #2
0
ファイル: mapelites.py プロジェクト: zohdit/DeepJanus
 def plot_map_of_elites(self):
     """
     Plot a heatmap of elites
     """
     plot_heatmap(self.performances,
                   self.feature_dimensions[1].name,
                   self.feature_dimensions[0].name,
                 savefig_path=self.log_dir_path,                     
                  )
コード例 #3
0
	def plot_map_of_elites(self, iteration):
		"""
		Plot a heatmap of elites
		"""
		# Stringify the bins to be used as strings in the plot axes
		x_ax = [str(d) for d in self.bins['bin_{}'.format(self.descriptors[5])]]
		y_ax = [str(d) for d in self.bins['bin_{}'.format(self.descriptors[6])]]

		#x_ax = [str(d) for d in self.bins['bin_{}'.format(self.descriptors[0])]]
		#y_ax = [str(d) for d in self.bins['bin_{}'.format(self.descriptors[1])]]

		plot_heatmap(self.performances,
						x_ax,
						y_ax,
						v_min=0.0,
						v_max=5.0,
						savefig_path=self.log_dir_path,
						iteration=iteration,
						title=f"MAP-Elites for the city of Boston",
						**self.plot_args)
コード例 #4
0
            if len(diff) != 1:
                name_parts.append("differences" if run.diff ==
                                  "diff" else "no differences")
            ddiff = "a" if run.diff == "nodiff" else "b"
            data = datas.setdefault(
                (run.dataset, run.bounds, run.method, ddiff), {
                    "name": " ".join(name_parts),
                    "runs": set()
                })
            data["runs"].add(run)

    if figure == "success":
        plot_heatmap(datas,
                     fig,
                     map2success,
                     "Successes (out of 5)",
                     flat=args.flat,
                     grid=grid,
                     vmin=0,
                     vmax=5)
    elif figure == "normdist":
        plot_heatmap(datas,
                     fig,
                     map2normdist,
                     "Normdist",
                     flat=args.flat,
                     grid=grid)
    elif figure == "row":
        plot_heatmap(datas, fig, map2row, "Row", flat=args.flat, grid=grid)
    elif figure == "blocks":
        plot_heatmap(datas,
                     fig,
コード例 #5
0
    "#FF8031",
    "#02D4F9",
    "#4F4C4B",
]
sns.set_palette(flatui)
sns.palplot(sns.color_palette())
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']

if not os.path.exists('figures'):
    os.makedirs('figures')

plot_utils.plot_heatmap(
    'saves/mnist_grid/grid_mnist_mlp_lr:inverse-time-decay_sgdm_T_5000_N_100/seed_3/result.pkl',
    key='train_sum_loss',
    xlabel='Decay',
    ylabel='Initial LR',
    cmap=plt.cm.Purples_r,
    levels=10,
    figsize=(8, 6),
)

plt.xticks([-2, -1, 0, 1, 2], fontsize=18)
plt.yticks([-3, -2, -1, 0, 1], fontsize=18)

es_K100 = plot_utils.load_log(
    'saves/mnist_lr_decay/train_sum_loss/es-mnist-mlp-obj:train_sum_loss-tune:lr:itd-T:5000-K:100-N:100-sigma:0.1-olr:0.1-seed:3',
    fname='frequent.csv')
es_K10 = plot_utils.load_log(
    'saves/mnist_lr_decay/train_sum_loss/es-mnist-mlp-obj:train_sum_loss-tune:lr:itd-T:5000-K:10-N:100-sigma:0.1-olr:0.01-seed:3',
    fname='frequent.csv')
es_K1 = plot_utils.load_log(
コード例 #6
0
sns.palplot(sns.color_palette())
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']

figure_dir = 'figures/mnist_heatmaps'
if not os.path.exists(figure_dir):
    os.makedirs(figure_dir)

# Plot train loss heatmap
# ---------------------------------------------------------------------------
plot_utils.plot_heatmap(
    'saves/mnist_grid_sgdm/grid_mnist_mlp_lr:inverse-time-decay_sgdm_T_5000_N_40/seed_3/result.pkl',
    key='unroll_obj',
    xlabel='Log LR Decay',
    ylabel='Log Init LR',
    cmap=plt.cm.Purples_r,
    levels=30,
    sigma=1.0,
    use_smoothing=True,
    show_contours=True,
    contour_alpha=0.2,
    figsize=(8, 6),
)

es_K10 = plot_utils.load_log(
    'saves/mnist_lr_decay/train_sum_loss/es-mnist-mlp-obj:train_sum_loss-tune:lr:inverse-time-decay-T:5000-K:10-nc:1-npc:1000-sigma:0.1-olr:0.01-ob1:0.9-ob2:0.999-ic:-1-oc:-1-seed:3',
    fname='frequent.csv')
pes_K10 = plot_utils.load_log(
    'saves/mnist_lr_decay/train_sum_loss/pes-mnist-mlp-obj:train_sum_loss-tune:lr:inverse-time-decay-T:5000-K:10-nc:1-npc:1000-sigma:0.1-olr:0.01-ob1:0.9-ob2:0.999-ic:-1-oc:-1-seed:3',
    fname='frequent.csv')

es_K100 = plot_utils.load_log(
コード例 #7
0
def ftr():
    print("Loading data...\n")
    X = np.loadtxt('X.txt')
    y = np.loadtxt('y.txt')

    print("Randomly partitioning into training and test sets...\n")
    n_train = 800
    X_train, y_train, X_test, y_test = randomly_partition(X, y, n_train)

    l_arr = [0.1, 0.35]
    #l_arr = [0.2, 0.25, 0.30, 0.35, 0.40]
    #l_arr = [0.1, 0.3, 0.5, 0.7, 0.9]

    var_0_arr = [1, 0.5]
    #var_0_arr = [0.45, 0.50, 0.55, 0.60, 0.65]
    #var_0_arr = [0.1, 0.3, 0.5, 0.7, 0.9]

    N = len(l_arr)
    M = len(var_0_arr)

    Z_matrix = np.zeros(shape=(N, M))

    for i in range(0, N):
        for j in range(0, M):
            l = l_arr[i]
            var_0 = var_0_arr[j]

            print("( l , var_0 ) = ( {} , {} )".format(l, var_0))
            X_tilde_train = get_x_tilde(
                evaluate_basis_functions(l, X_train, X_train))
            X_tilde_test = get_x_tilde(
                evaluate_basis_functions(l, X_test, X_train))

            w_map, log_Z, predict_laplace = find_map(X_tilde_train, y_train,
                                                     var_0)
            Z_matrix[i][j] = log_Z

            print("Log Z = {}\n".format(log_Z))

            verbose = True
            if (verbose):
                predict_map = lambda X: predict(X_tilde=X, w=w_map)

                probs_test_laplace = predict_laplace(X_tilde_test)
                display_metrics(probs_test_laplace, y_test, "Test laplace")

                probs_train_laplace = predict_laplace(X_tilde_train)
                display_metrics(probs_train_laplace, y_train, "Train laplace")

                probs_test_map = predict_map(X_tilde_test)
                display_metrics(probs_test_map, y_test, "Test map")

                probs_train_map = predict_map(X_tilde_train)
                display_metrics(probs_train_map, y_train, "Train map")

                expansion_function = lambda x: evaluate_basis_functions(
                    l, x, X_train)

                plot_predictive_general(
                    X,
                    y,
                    predict_map,
                    expansion_function,
                    title="MAP predictions (s^2, l)=({}, {})".format(var_0, l))
                plot_predictive_general(
                    X,
                    y,
                    predict_laplace,
                    expansion_function,
                    title="Laplace predictions (s^2, l)=({}, {})".format(
                        var_0, l))

    plot_heatmap(Z_matrix, var_0_arr, l_arr)