def plotErrorCorrection(prices, forecast, preds, company): datesF = list(forecast.index.values)[1:] datesP = list(prices.index.values) valuesF = list(forecast['FORECAST'].values)[1:] valuesP = list(prices['PRC'].values) colorF = list(forecast['OFFSET'].values)[1:] datesPred = list(preds['MONTH'].values) valuesPred = list(preds['VALUE'].values) variationP = list([0]*len(valuesPred)) for i in range(len(datesPred)): datesPred[i] = datesPred[i]+12 minC = min(variationP) maxC = max(variationP) '''variationP = list(forecast['VALUES'].values) variationP = np.nan_to_num(variationP) variation = [-val for val in variationP] print(variation) minC = min(variation) maxC = max(variation) print(variation) print(forecast)''' ploting_utilities.plots2D([datesP,datesF,datesPred], [valuesP,valuesF,valuesPred], [None,None,variationP], [False,False,True], company, minC, maxC)
def test(): x1 = [10, 11, 12, 13] y1 = [100, 101, 102, 103] x2 = [11, 12, 13, 14] y2 = [101, 102, 103, 104] ploting_utilities.plots2D([x1, x2], [y1, y2])
def plotRelative(prices, preds, grades, forecast, company): datesF = list(forecast.index.values) for i in range(len(datesF)): datesF[i] = datesF[i] forecasts = list(forecast['FORECAST'].values) valprice = list(prices['PRC'].values) datesprice = list(prices.index.values) gradeDate = [i+12 for i in grades['MONTH'].values] gradePreds = list(grades['VALUE'].values) gradeGrades = list(grades['GRADE'].values) ploting_utilities.plots2D([datesF, datesprice, gradeDate], [forecasts, valprice, gradePreds], [None,None,gradeGrades], [False,False,True], company)
def plotAbsolute(prices, preds, grades, forecast, company): datesF = list(forecast['MONTH'].values) for i in range(len(datesF)): datesF[i] = datesF[i] forecasts = list(forecast['FORECAST'].values) bestF = list(forecast['BEST_FORECAST'].values) straightF = list(forecast['STRAIGHT_FORECAST'].values) valprice = list(prices['PRC'].values) datesprice = list(prices.index.values) gradeDate = list(grades['MONTH'].values) gradePreds = list(grades['FORECAST'].values) gradeGrades = list(grades['GRADE'].values) ploting_utilities.plots2D( [datesF, datesprice, datesF, datesF, gradeDate], [forecasts, valprice, bestF, straightF, gradePreds], [None, None, None, None, gradeGrades], [False, False, False, False, True], company)
def plotShortTerm(prices, forecast, company): datesF = list(forecast.index.values)[1:] datesP = list(prices.index.values) valuesF = list(forecast['FORECAST'].values)[1:] valuesP = list(prices['PRC'].values) variationP = list(forecast['FORECAST'].values) variationP = np.nan_to_num(variationP) variation = [-val for val in variationP] print(variation) minC = min(variation) maxC = max(variation) print(variation) print(forecast) ploting_utilities.plots2D([datesP, datesF], [valuesP, valuesF], [None, variation], [False, True], company, minC, maxC)