baseline = Cuts.lepton(lep) * Cuts.hlt(lep) * Cuts.metmt(lep) * Cuts.rms_lj cuts += [ #Without the MET cut ("%s_nomet" % cn, Cuts.lepton(lep) * Cuts.hlt(lep) * Cuts.rms_lj * cbline), #Baseline for fit ("%s_baseline" % cn, baseline * cbline), #Cut-based check ("%s_cutbased_final" % cn, baseline * cbline * Cuts.top_mass_sig * Cuts.eta_lj ), #MVA-based selection ("%s_mva_loose" % cn, baseline * cbline * Cuts.mva_wp(lep) ), ] #MVA scan # for mva in numpy.linspace(0, 0.8, 9): # cuts.append( # ("%s_mva_scan_%s" % (cn, str(mva).replace(".","_")), # baseline * cbline * Cuts.mva_wp(lep, mva) # ), # ) import cPickle as pickle import gzip class PickleSaver: def __init__(self, fname): self.of = gzip.GzipFile(fname, 'wb')
if not cut: cut = _cut else: cut *= _cut try: hi = samp.drawHistogram("eta_lj", str(cut), binning=[50, -5, 5]) hi.Scale(samp.lumiScaleFactor(20000)) print cutname print hi.GetEntries(), hi.Integral() except: print "-1 -1" for cutname, _cut in [ ("HLT", Cuts.hlt(lep)), ("lep", Cuts.single_lepton(lep)), ("2J", Cuts.n_jets(2)), ("1T", Cuts.n_tags(1)), ("MVA", Cuts.mva_wp(lep)) ]: if not cut: cut = _cut else: cut *= _cut try: hi = samp.drawHistogram("eta_lj", str(cut), binning=[50, -5, 5]) hi.Scale(samp.lumiScaleFactor(20000)) print cutname print hi.GetEntries(), hi.Integral() except: print "-1 -1"