def make_systematics_histos(var, cuts, cuts_antiiso, systematics, outdir="/".join([os.environ["STPOL_DIR"], "lqetafit", "histos"]), indir="/".join([os.environ["STPOL_DIR"], "step3_latest"]), channel="mu", coupling="powheg", binning=None, plot_range=None, asymmetry=None, mtmetcut=None): #logging.basicConfig(level="INFO") logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) logging.debug('This message should appear on the console') #print "outdir", outdir #system.exit(1) try: shutil.rmtree(outdir) except OSError: logging.warning("Couldn't remove directory %s" % outdir) mkdir_p(outdir) for main_syst, sub_systs in systematics.items(): systname = main_syst if systname == "partial": for sub_syst, updown in sub_systs.items(): for (k, v) in updown.items(): ss = {} ss[k] = v make_histos_for_syst(var, sub_syst, ss, cuts, cuts_antiiso, outdir, indir, channel, coupling=coupling, binning=binning, plot_range=plot_range, asymmetry=asymmetry, mtmetcut=mtmetcut) elif systname != "nominal": for sub_syst, path in sub_systs.items(): ss = {} ss[sub_syst] = path make_histos_for_syst(var, systname, ss, cuts, cuts_antiiso, outdir, indir, channel, coupling=coupling, binning=binning, plot_range=plot_range, asymmetry=asymmetry, mtmetcut=mtmetcut) else: make_histos_for_syst(var, systname, sub_systs, cuts, cuts_antiiso, outdir, indir, channel, coupling=coupling, binning=binning, plot_range=plot_range, asymmetry=asymmetry, mtmetcut=mtmetcut) add_histos(outdir, var, channel, "mva" in cuts, mtmetcut)
def make_histos(cut_name, cut, samples, out_dir): samp_out_dir = "/".join((out_dir, cut_name)) mkdir_p(samp_out_dir) for s in samples: fi = ROOT.TFile(samp_out_dir + "/WJets_flavour_fracs__%s" % s, "RECREATE") counts = get_hf_frac(s, cut) count_list = counts.keys() fi.cd() hi = Hist(len(count_list), 0, len(count_list) - 1, type="f", name="flavour_counts") i = 1 for count in count_list: hi.SetBinContent(i, counts[count]) hi.SetBinError(i, math.sqrt(counts[count])) hi.GetXaxis().SetBinLabel(i, count) i += 1 hi.Sumw2() # Normalize to according to all events hi.Scale(10000.0 / hi.GetBinContent(i - 1)) fi.cd() hi.SetDirectory(fi) hi.Write() logging.info("Wrote file %s" % fi.GetPath()) fi.Close() return
def plot_sherpa_vs_madgraph(var, cut_name, cut, samples, out_dir, recreate=False, **kwargs): hname = var["varname"] out_dir = out_dir + "/" + cut_name if recreate and os.path.exists(out_dir): logger.info("Output directory %s exists, removing" % out_dir) shutil.rmtree(out_dir) mkdir_p(out_dir) logger.info("Using output directory %s" % out_dir) logger.info("Using output directory %s" % out_dir) coll = data_mc(var["var"], cut_name, cut, Weights.total()*Weights.mu, samples, out_dir, recreate, LUMI_TOTAL, reweight_madgraph=True, flavour_split=True, plot_range=var["range"], **kwargs) logging.debug(str(coll.hists)) for hn, hist in coll.hists.items(): sample_name = coll.metadata[hn].sample_name process_name = coll.metadata[hn].process_name match = re.match(".*/cut__flavour__(W_[Hl][Hl])/.*", hn) if match: flavour_scenario = match.group(1) else: flavour_scenario = None try: if sample_types.is_mc(sample_name): Styling.mc_style(hist, process_name) else: Styling.data_style(hist) except KeyError as e: logger.warning("Couldn't style histogram %s" % hn) if flavour_scenario: logger.debug("Matched flavour split histogram %s, %s" % (hn, flavour_scenario)) #Styling.mc_style(hist, process_name) if re.match("W_H[lH]", flavour_scenario): logger.debug("Changing colour of %s" % (hn)) hist.SetFillColor(hist.GetFillColor()+1) hist.SetLineColor(hist.GetLineColor()+1) logger.debug("pre merge: %s" % str([ (hn, coll.hists[hn].GetLineColor()) for hn in coll.hists.keys() if "sherpa" in hn])) merges = dict() merge_cmds = get_merge_cmds() merge_cmds.pop("WJets") merges["madgraph/unweighted"] = merge_cmds.copy() merges["madgraph/weighted"] = merge_cmds.copy() merges["sherpa/unweighted"] = merge_cmds.copy() merges["sherpa/weighted"] = merge_cmds.copy() merges["sherpa/unweighted"]["WJets_hf"] = ["weight__nominal/cut__flavour__W_heavy/WJets_sherpa_nominal"] merges["sherpa/unweighted"]["WJets_lf"] = ["weight__nominal/cut__flavour__W_light/WJets_sherpa_nominal"] merges["sherpa/weighted"]["WJets_hf"] = ["weight__sherpa_flavour/cut__flavour__W_heavy/WJets_sherpa_nominal"] merges["sherpa/weighted"]["WJets_lf"] = ["weight__sherpa_flavour/cut__flavour__W_light/WJets_sherpa_nominal"] merges["madgraph/unweighted"]["WJets_hf"] = ["weight__nominal/cut__flavour__W_heavy/W[1-4]Jets_exclusive"] merges["madgraph/unweighted"]["WJets_lf"] = ["weight__nominal/cut__flavour__W_light/W[1-4]Jets_exclusive"] merges["madgraph/weighted"]["WJets_hf"] = ["weight__reweight_madgraph/cut__flavour__W_heavy/W[1-4]Jets_exclusive"] merges["madgraph/weighted"]["WJets_lf"] = ["weight__reweight_madgraph/cut__flavour__W_light/W[1-4]Jets_exclusive"] hmerged = dict() for k in merges.keys(): hmerged[k] = merge_hists(copy.deepcopy(coll.hists), merges[k]) logger.debug("post merge: %s" % str([ (hn, hmerged["sherpa/weighted"][hn].GetLineColor()) for hn in hmerged["sherpa/weighted"].keys()])) #w_mg_sh = 1.0416259307303726 #sherpa to madgraph ratio w_mg_sh = 1.0821535639376414 hmerged["sherpa/weighted"]["WJets_hf"].Scale(w_mg_sh) hmerged["sherpa/weighted"]["WJets_lf"].Scale(w_mg_sh) logger.info("Drawing madgraph unweighted plot") canv = ROOT.TCanvas("c2", "c2") suffix = "__%s__%s" % (var["var"], cut_name) suffix = escape(suffix) plot(canv, "madgraph_unw"+suffix, hmerged["madgraph/unweighted"], out_dir, **kwargs) kwargs = dict({"x_label": var["varname"]}, **kwargs) for k, v in hmerged.items(): logger.debug("Group %s" % k) for hn, h in v.items(): logger.debug("Sample %s = %.2f" % (hn, h.Integral())) logger.info("%s data=%.2f" % (k, v["data"].Integral())) logger.info("%s MC=%.2f" % (k, sum([h.Integral() for k, h in v.items() if k!="data"]))) hists_flavours_merged = dict() hists_flavours_merged["madgraph/weighted"] = merge_hists(hmerged["madgraph/weighted"], {"WJets": ["WJets_hf", "WJets_lf"]}) hists_flavours_merged["madgraph/unweighted"] = merge_hists(hmerged["madgraph/unweighted"], {"WJets": ["WJets_hf", "WJets_lf"]}) hists_flavours_merged["sherpa/unweighted"] = merge_hists(hmerged["sherpa/unweighted"], {"WJets": ["WJets_hf", "WJets_lf"]}) hists_flavours_merged["sherpa/weighted"] = merge_hists(hmerged["sherpa/weighted"], {"WJets": ["WJets_hf", "WJets_lf"]}) logger.info("Drawing sherpa weighted plot") canv = ROOT.TCanvas("c1", "c1") plot(canv, "sherpa_rew"+suffix, hmerged["sherpa/weighted"], out_dir, **kwargs) logger.info("Drawing sherpa unweighted plot") canv = ROOT.TCanvas("c1", "c1") plot(canv, "sherpa_unw"+suffix, hmerged["sherpa/unweighted"], out_dir, **kwargs) logger.info("Drawing madgraph plot") canv = ROOT.TCanvas("c2", "c2") plot(canv, "madgraph_rew"+suffix, hmerged["madgraph/weighted"], out_dir, **kwargs) total_madgraph = copy.deepcopy(hmerged["madgraph/unweighted"]) merged_colls = dict() for k, v in hmerged.items(): merged_colls[k] = HistCollection(copy.deepcopy(v), name=k) logger.info("Drawing sherpa vs. madgraph shape comparison plots") hists = [ ("sherpa unw hf", hmerged["sherpa/unweighted"]["WJets_hf"]), ("sherpa rew hf", hmerged["sherpa/weighted"]["WJets_hf"]), ("madgraph unw hf", hmerged["madgraph/unweighted"]["WJets_hf"]), ("madgraph rew hf", hmerged["madgraph/weighted"]["WJets_hf"]), ] hists = copy.deepcopy(hists) for hn, h in hists: h.SetTitle(hn + " %.2f" % h.Integral()) h.Scale(1.0/h.Integral()) hists = [h[1] for h in hists] ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) leg = legend(hists, styles=["f", "f"], **kwargs) canv.SaveAs(out_dir + "/weighted_flavour_hf_%s.png" % hname) canv.Close() hists = [ ("data", hmerged["madgraph/unweighted"]["data"]), ("sherpa", hists_flavours_merged["sherpa/unweighted"]["WJets"]), ("madgraph", hists_flavours_merged["madgraph/unweighted"]["WJets"]), ] hists = copy.deepcopy(hists) for hn, h in hists: h.SetTitle(hn + " %.2f" % h.Integral()) h.Scale(1.0/h.Integral()) hists = [h[1] for h in hists] ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) leg = legend(hists, styles=["f", "f"], **kwargs) canv.SaveAs(out_dir + "/unweighted_sherpa_mg_%s.png" % hname) canv.Close() hists = [ ("data", hmerged["madgraph/unweighted"]["data"]), ("sherpa", hists_flavours_merged["sherpa/weighted"]["WJets"]), ("madgraph", hists_flavours_merged["madgraph/weighted"]["WJets"]), ] hists = copy.deepcopy(hists) for hn, h in hists: h.SetTitle(hn + " %.2f" % h.Integral()) h.Scale(1.0/h.Integral()) hists = [h[1] for h in hists] ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) leg = legend(hists, styles=["f", "f"], **kwargs) canv.SaveAs(out_dir + "/weighted_sherpa_mg_%s.png" % hname) canv.Close() hists = [ ("sherpa unw lf", hmerged["sherpa/unweighted"]["WJets_lf"]), ("sherpa rew lf", hmerged["sherpa/weighted"]["WJets_lf"]), ("madgraph unw lf", hmerged["madgraph/unweighted"]["WJets_lf"]), ("madgraph rew lf", hmerged["madgraph/weighted"]["WJets_lf"]), ] hists = copy.deepcopy(hists) for hn, h in hists: h.SetTitle(hn + " %.2f" % h.Integral()) h.Scale(1.0/h.Integral()) hists = [h[1] for h in hists] ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) leg = legend(hists, styles=["f", "f"], **kwargs) canv.SaveAs(out_dir + "/weighted_flavour_lf_%s.png" % hname) canv.Close() hists = [ ("data", hmerged["madgraph/unweighted"]["data"]), ("madgraph unw", hists_flavours_merged["madgraph/unweighted"]["WJets"]), ("madgraph rew", hists_flavours_merged["madgraph/weighted"]["WJets"]), ("sherpa unw", hists_flavours_merged["sherpa/unweighted"]["WJets"]), ("sherpa rew", hists_flavours_merged["sherpa/weighted"]["WJets"]), ] hists = copy.deepcopy(hists) for hn, h in hists: h.SetTitle(hn + " %.2f" % h.Integral()) h.Scale(1.0/h.Integral()) hists = [h[1] for h in hists] ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) leg = legend(hists, styles=["f", "f"], **kwargs) hists[0].SetTitle("") canv.Update() canv.SaveAs(out_dir + "/shapes_%s.png" % hname) canv.Close() # hists = [ # ("sherpa hf", hmerged["sherpa"]["WJets_hf"]), # ("madgraph unw hf", hmerged["madgraph/unweighted"]["WJets_hf"]), # ("madgraph rew hf", hmerged["madgraph/weighted"]["WJets_hf"]), # ] # hists = copy.deepcopy(hists) # for hn, h in hists: # h.SetTitle(hn + " %.2f" % h.Integral()) # h.Scale(1.0/h.Integral()) # hists = [h[1] for h in hists] # ColorStyleGen.style_hists(hists) # canv = plot_hists(hists, x_label=var["varname"], do_chi2=True) # leg = legend(hists, styles=["f", "f"], **kwargs) # hists[0].SetTitle("madgraph sherpa rew hf") # canv.SaveAs(out_dir + "/shapes_hf_%s.png" % hname) # canv.Close() return coll, merged_colls
def plot_ratios(cut_name, cut, samples, out_dir, recreate, flavour_scenario=flavour_scenarios[0]): out_dir += "/" + cut_name mkdir_p(out_dir) colls = dict() samples_WJets = filter(lambda x: sample_types.is_wjets(x.name), samples) for sc in flavour_scenario: logger.info("Drawing ratio with cut %s" % sc) cut_ = cut*getattr(Cuts, sc) colls[sc] = data_mc(costheta["var"], cut_name + "__" + sc, cut_, Weights.total()*Weights.mu, samples_WJets, out_dir, recreate, LUMI_TOTAL, plot_range=costheta["range"]) logger.debug(colls[flavour_scenario[0]].hists["weight__nominal/cut__all/WJets_sherpa_nominal"].Integral()) logger.debug(colls[flavour_scenario[1]].hists["weight__nominal/cut__all/WJets_sherpa_nominal"].Integral()) coll = dict() for k, c in colls.items(): for hn, h in c.hists.items(): coll[hn + "/" + k] = h for k, h in coll.items(): logger.debug("%s = %s" % (k, str([y for y in h.y()]))) logger.debug(coll) #coll = HistCollection(coll, name=cut_name) merges = {} for sc in flavour_scenario: merges["madgraph/%s" % sc] = ["weight__nominal/cut__all/W[1-4]Jets_exclusive/%s" % sc] merges["sherpa/unweighted/%s" % sc] = ["weight__nominal/cut__all/WJets_sherpa_nominal/%s" % sc] merges["sherpa/weighted/%s" % sc] = ["weight__sherpa_flavour/cut__all/WJets_sherpa_nominal/%s" % sc] merged = merge_hists(coll, merges) for k, h in merged.items(): logger.debug("%s = %s" % (k, str([y for y in h.y()]))) hists_flavour = dict() hists_flavour["madgraph"] = ROOT.TH1F("madgraph", "madgraph", len(flavour_scenario), 0, len(flavour_scenario)-1) hists_flavour["sherpa/unweighted"] = ROOT.TH1F("sherpa_unw", "sherpa unweighted", len(flavour_scenario), 0, len(flavour_scenario)-1) hists_flavour["sherpa/weighted"] = ROOT.TH1F("sherpa_rew", "sherpa weighted", len(flavour_scenario), 0, len(flavour_scenario)-1) for i, sc in zip(range(1,len(flavour_scenario)+1), flavour_scenario): sh1_int, sh1_err = calc_int_err(merged["sherpa/unweighted/%s" % sc]) sh2_int, sh2_err = calc_int_err(merged["sherpa/weighted/%s" % sc]) mg_int, mg_err = calc_int_err(merged["madgraph/%s" % sc]) logger.debug("%.2f %.2f" % (sh1_int, sh1_err)) logger.debug("%.2f %.2f" % (sh2_int, sh2_err)) logger.debug("%.2f %.2f" % (mg_int, mg_err)) hists_flavour["madgraph"].SetBinContent(i, mg_int) hists_flavour["madgraph"].SetBinError(i, mg_err) hists_flavour["sherpa/unweighted"].SetBinContent(i, sh1_int) hists_flavour["sherpa/unweighted"].SetBinError(i, sh1_err) hists_flavour["sherpa/weighted"].SetBinContent(i, sh2_int) hists_flavour["sherpa/weighted"].SetBinError(i, sh2_err) hists_flavour["madgraph"].GetXaxis().SetBinLabel(i, sc) hists_flavour["sherpa/unweighted"].GetXaxis().SetBinLabel(i, sc) hists_flavour["sherpa/weighted"].GetXaxis().SetBinLabel(i, sc) hists_flavour["sherpa/weighted"].Sumw2() hists_flavour["sherpa/unweighted"].Sumw2() hists_flavour["madgraph"].Sumw2() hists_flavour["ratio/unweighted"] = hists_flavour["madgraph"].Clone("ratio_unw") hists_flavour["ratio/unweighted"].Divide(hists_flavour["sherpa/unweighted"]) hists_flavour["ratio/weighted"] = hists_flavour["madgraph"].Clone("ratio_rew") hists_flavour["ratio/weighted"].Divide(hists_flavour["sherpa/weighted"]) for i, sc in zip(range(1,len(flavour_scenario)+1), flavour_scenario): logger.info("weights[%s] = %.6f; //error=%.6f [%d]" % (sc, hists_flavour["ratio/unweighted"].GetBinContent(i), hists_flavour["ratio/unweighted"].GetBinError(i), i)) flavour_ratio_coll = HistCollection(hists_flavour, name="hists__flavour_ratios") flavour_ratio_coll.save(out_dir) for sc in flavour_scenario: hists = [merged["madgraph/%s" % sc], merged["sherpa/unweighted/%s" % sc], merged["sherpa/weighted/%s" % sc]] for hist in hists: norm(hist) #hist.SetName(sc) #hist.SetTitle(sc) ColorStyleGen.style_hists(hists) canv = plot_hists(hists, x_label=costheta["varname"]) leg = legend(hists, styles=["f", "f"], nudge_x=-0.2) chi2 = hists[0].Chi2Test(hists[1], "WW CHI2/NDF") hists[0].SetTitle("madgraph to sherpa comparison #chi^{2}/ndf=%.2f" % chi2) canv.Update() canv.SaveAs(out_dir + "/flavours__%s.png" % (sc)) md_merged = dict() for sc in flavour_scenario: logger.info("Calculating ratio for %s" % sc) hi = merged["sherpa/unweighted/%s" % sc].Clone("ratio__%s" % sc) hi.Divide(merged["madgraph/%s" % sc]) merged[hi.GetName()] = hi hc_merged = HistCollection(merged, md_merged, "hists__costheta_flavours_merged") hc_merged.save(out_dir) logger.info("Saved merged histogram collection")
parser.add_argument('--tag', type=str, default="test") args = parser.parse_args() if args.recreate: samples = load_samples(os.environ["STPOL_DIR"]) for s in samples.values(): if sample_types.is_wjets(s.name): s.tree.AddFriend("trees/WJets_weights", s.tfile) else: samples = {} out_dir = os.environ["STPOL_DIR"] + "/out/plots/wjets" if args.tag: out_dir += "/" + args.tag mkdir_p(out_dir) # plot_ratios("2J0T", Cuts.final(2,0), samples, out_dir, args.recreate) # plot_ratios("2J1T", Cuts.final(2,1), samples, out_dir, args.recreate) colls_in, colls_out = plot_sherpa_vs_madgraph( costheta, "2J", Cuts.mu*Cuts.final_jet(2), samples.values(), out_dir, recreate=args.recreate, legend_pos="top-left", nudge_x=-0.03, nudge_y=0, systematic="nominal" ) coll_in, coll_out = plot_sherpa_vs_madgraph( costheta, "2J0T", Cuts.mu*Cuts.final(2,0), samples.values(), out_dir, recreate=args.recreate, legend_pos="top-left", nudge_x=-0.03, nudge_y=0 )
if args.var == "C" or args.var.startswith("mva"): cut_str = str(Cuts.mva_iso(args.channel, mva_var=args.var, mtcut=args.mtmetcut)) cut_str_antiiso = str(Cuts.mva_antiiso(args.channel, mva_var=args.var, mtcut=args.mtmetcut)) if args.var.startswith("mva"): plot_range = [20, -1, 1] else: plot_range = [20, 0, 1] else: cut_str = str(Cuts.eta_fit(args.channel, mtcut=args.mtmetcut)) cut_str_antiiso = str(Cuts.eta_fit_antiiso(args.channel, mtcut=args.mtmetcut)) var = "eta_lj" plot_range = [15, 0, 4.5] indir = args.path outdir = os.path.join(os.environ["STPOL_DIR"], "final_fit", "histos", "input", generate_out_dir(args.channel, args.var, "-1", args.coupling, args.asymmetry, args.mtmetcut, extra=args.extra)) outdir_final = os.path.join(os.environ["STPOL_DIR"], "final_fit", "histos") #generate the systematics to use systematics = generate_systematics(args.channel, args.coupling) #make histograms with all the systematic variations make_systematics_histos(args.var, cut_str, cut_str_antiiso, systematics, outdir, indir, args.channel, args.coupling, plot_range=plot_range, asymmetry=args.asymmetry, mtmetcut=args.mtmetcut) mkdir_p(outdir_final) #move results file from temporary location shutil.move( '/'.join([outdir, "lqeta.root"]), '/'.join([ outdir_final, generate_out_dir(args.channel, args.var, "-1", args.coupling, args.asymmetry, args.mtmetcut, extra=args.extra)+ ".root"] ) ) print "finished"